Real-Time Wrinkles

Christopher Oat
AMD, Inc.

Ruby: Whiteout Demo

Ruby: Whiteout real-time demo.

Outline

* Real-Time Wrinkles
— Pre-Scripted (Animated) Wrinkles

— Dynamic Wrinkles

Facial wrinkles

Ruby in 20677

The kinds of wrinkles we’re talking about today are the kind of wrinkles you get
from moving your facial muscles. These are the kind of wrinkles that appear
and disappear as you change facial expressions. Example: make a surprised
face and your eyebrows go up and your forehead wrinkles or when you eat
something very sour and you face puckers. The kinds of wrinkles I’'m talking
about are the kind that we associate with strong facial expression. These
kinds of wrinkles, it turns out, are very important when you want to create
compelling facial animation.

Facial wrinkles are important

www.wikipedia.org/wiki/Guillaume_Duchenne www.wikipedia.org/wiki/Facial _expression

Facial wrinkles are important for interpreting facial expression. In the early to
mid-1800s a French neurologist named Guillaume Duchenne performed
experiments that involved applying electric simulation to the muscled in
people’s face. He was able to determine which facial muscles were used for
different facial expressions. One thing he discovered is that smiles resulting
from true happiness not only utilize the muscles of the mouth but also those of
the eyes. These kind of “genuine” smiles are called Duchenne smiles
(according to Wikipedia). What we learn from this is that facial expressions
are complex and sometimes subtle but they are important. It would be difficult
to come up with a automatic/dynamic method for facial wrinkles that didn’t land
you deep in the uncanny valley... your system would have to distinguish
between such things as fake smiles and Duchenne smiles. So you really want
a human sitting at the steering wheel when it comes to driving facial wrinkles
as they relate to facial expressions. You really want your artists to have
control over this aspect of facial animation.

Image and text taken from Wikipedia (as it appeared on July 17, 2007):
www.wikipedia.org/wiki/Facial_expression

Image and text taken from Wikipedia (as it appeared on July 17, 2007):
www.wikipedia.org/wiki/Guillaume_Duchenne

Facial expression helps tell a story

* Compelling facial animation
— Important
— Challenging
* Our characters tell a story
— Facial expression gives contextual clues

— Wrinkles help disambiguate certain facial poses

Compelling facial animation is an extremely important and challenging aspect
of computer graphics. Both games and animated feature films rely on
convincing characters to help tell a story and an important part of character
animation is the character’s ability to use facial expression. Without even
realizing it, we often depend on the subtleties of facial expression to give us
important contextual cues about what someone is saying, thinking, or feeling.
For example a wrinkled brow can indicate surprise while a furrowed brow may
indicate confusion or inquisitiveness.

Facial wrinkles help tell a story

Here we see Ruby with her facial wrinkles removed. This gives her a rather
expressionless look on her face and it makes it very difficult to guess what
she’s thinking, what kind of mood she’s in. Without some facial cues we're left
guessing what Ruby is thinking.

Facial wrinkles help tell a story

Here’s the same image with the wrinkles added in. We see that Ruby’s brow
is wrinkled and that little spot between her eye brows is dimpled (sort of
puckered?) and we know that she’s thinking something; she’s scheming. And
she’s about to say something cunning. By adding a wrinkle map we’ve
completed the picture. Ruby’s expression tells us her mood, helps us
understand the kind of person she is and explains what she’s doing here in
this image.

Facial wrinkles help tell a story

<«
)

Here’s the same image with the wrinkles added in. We see that Ruby’s brow
is wrinkled and that little spot between her eye brows is dimpled (sort of
puckered?) and we know that she’s thinking something; she’s scheming. And
she’s about to say something cunning. By adding a wrinkle map we’ve
completed the picture. Ruby’s expression tells us her mood, helps us
understand the kind of person she is and explains what she’s doing here in
this image.

Wrinkle Maps

e Can’t bake wrinkles into normal map

* |Instead store them in “Wrinkle Maps”

— Just additional bump maps that you add on top
of your base normal map

— Allows you to turn them on and off dynamically
— Store a few wrinkle “poses”

—Blend in poses as they are needed

Can’t simply paint wrinkles into our character’s normal map or we will curse
them to a single facial expression forever. Instead we store our wrinkles in a
separate wrinkle map. Wrinkle maps are just additional bump maps that get
added on top of our base normal maps. But because they are autonomous
from the normal map they can be independently turned on and off.

10

Wrinkle map poses

—-
.

- “hn d

Stretch pose Compress pose

* We only used two wrinkle map poses
— Stretch pose (exaggerated surprise)

— Compress pose (sour lemon face)

The technique we came up with utilizes just two wrinkle map poses. We then
use a set of masks and artist animated weights to allow wrinkles to be
animated independently in different regions of our character’s face. The end
result is a wrinkled normal map that is used to while rendering our character’s
face.

The first wrinkle map encodes wrinkles for a stretched expression
(exaggerated surprise expression: eyes wide open, eyebrows up, forehead
wrinkles, mouth open) and the second wrinkle map encodes wrinkles for a
compressed expression (think of sucking on a sour lemon: eyes squinting,
forehead compressed down towards eyebrows, lips puckered, chin
compressed and dimpled).

11

Wrinkle Maps

Compress Pose Stretch Pose

Here are what the actual wrinkle maps look like. They’re simply tangent space
normal maps.

12

Wrinkle masks and weights

* Mask off independent facial regions
— Four masks packed into RGBA texture
e Each mask is paired with artist animated weights

— Scalar values, act as influences for blending in wrinkles

In order to have independently controlled wrinkles on our character’s face, we must divide her
face into multiple regions. Each region is specified by a mask that is stored in a texture map.

Because a mask can be stored in a single color channel (it’s just a scalar) of a texture, we are
able to store up to four masks in a single four channel texture as shown above. Using masks
allows us to store wrinkles for different parts of the face, such as the chin and forehead, in the
same wrinkle map and still maintain independent control over wrinkles on different regions of

our character’s face.

Each mask is paired with an animated wrinkle weight. Wrinkle weights are scalar values and
act as influences for blending in wrinkles from the two wrinkle maps. For example, the upper
left brow (red channel of left most image) will have its own “Upper Left Brow” weight. Each
weight is in the range [1,-1] and corresponds to the following wrinkle map influences:

Sample mask textures to build a vector of wrinkle masks and get the weights from constant
store to build a vector of weights. Then just dot the mask vector with the weight vector to
compute a wrinkle map influence.

13

Wrinkle weights

* Think of weight like a slider:
-1 == Wrinkle map 1 full influence (surprise face)
0 == No wrinkle influence (base normal map only)
== Wrinkle map 2 full influence (lemon face)
e Smoothly interpolate between two wrinkle
maps
— Gives you an animated wrinkle map

— Add final wrinkle map to base normal map

-1 == full influence from wrinkle map 1 (surprise face)
0 == no influence from either wrinkle map (base normal map only)
1 == full influence from wrinkle map 2 (“what’s that smell?” face)

Wrinkle Maps

Normal map Wrinkle map Final normal map

e Combining wrinkle maps with a normal map

— Don'’t just average them or you'll lose detail

vWrinkledNormal vWrinkleTS.xy + vNormalTS.xy
vWrinkleTS.z * vNormalTS.z

As usual, the normal map encodes fine surface detail such as pores, scars, or other facial details. Thus
the normal map acts as a base layer on top of which wrinkle maps are added. Because the normal map
includes important detail, we do not want to simply average the normal map with the wrinkle maps or
some of the normal map’s details may be lost.

The idea is that when we composite two normal maps, any bumps that exist should end up in the final
composition. So if there are pores in the normal map then we want those pores to be just as strong
when we blend in a wrinkle map. If you just average the two normals (add them then renormalize) the
details can start to fade away. For example, if you have one normal map with lots of high frequency
detail and another normal map that is flat (all normals are <0,0,1>) after you blend them by averaging,
the resultant normals are a dumbed down version of your high frequency normal map (the normals all
shift towards pointing straight up).

One thing to note is that a normal is “bumpy” when the magnitude of its z component is small. The less
that a normal points in the z direction, the more “bumpy” it is. The direction of the bump is all in the x
and y components. So we blend the x and y components which gives a blended bump direction. For
example, if you have a normal pointing “north” and a normal pointing “west” you end up with a normal
pointing north-west. Now, you can’t simply blend the z components in the same way or your bumps will
start to flatten out. Using multiplication gives us what we want here... for example if you are on the edge
(wall?) of a pore in the normal map then your z value might be 0.75 and if you are on the edge/curve of a
wrinkle in the wrinkle map then the z value might be 0.5. In order to get that pore onto the edge of the
wrinkle you need a very small z value (since the wrinkle is kind of a bump itself, on that part of the
wrinkle 0.5 is perpendicular to the surface... that’s why the normal points that way in the first place after
all). Multiplying gives us something less than perpendicular (i.e. a bump on a curving surface) and it's
“less than perpendicular” in the right direction.

15

Facial wrinkle demo

Short clip that demonstrates this technique.

16

Performance driven animation

* Ruby’s animation driven by real life actress
— Facial recognition algorithm
— Drives morph and wrinkle weights

— www.image-metrics.com

One interesting note is that much of the facial animation in the Ruby demo,
including the animate wrinkle weights, was generated using a performance
driven animation technique. We worked with a company named ImageMetrics
who filmed our voice actress, the woman that does Ruby’s voice, while she
was performing and ran the captured frames through a facial recognition
algorithm that would automatically set our facial morph blend weights (for the
facial mesh) as well as our animated facial wrinkle weights.

17

Animated wrinkle maps

* We used this for facial wrinkles, you can use it
any time you need artist animated wrinkles

— See course notes for shader code
* Extends to more than two wrinkle poses
— Same masks
— More weights
— More wrinkle maps

e Sometimes you don’t want to pre-animated, you
need dynamic wrinkles... (next)

This technique is simple and efficient and allows artists to animate wrinkles on
a surface. I've demonstrated the technique with two wrinkle poses but there’s
no reason you couldn’t extend the idea to allow for many different kinds of
wrinkle poses to be blended for many different regions on a character’s face.
The strength of this technique lies in its ability to be art directed, you get
explicit control over how and when your surfaces wrinkle. This allows artists to
give their character’s detailed facial expressions but of course there is a time
cost associated with this. Someone has to manually go through and set all the
wrinkle weight key frames and there are definitely situations where you want
wrinkles but you don’t want to have to spend time going through this manual
animation process.

18

Dynamic Wrinkles

* Useful for things like clothing
— Looks plausible

— Not exactly physically correct

* Does not require artist animated wrinkle
weights
— Give up animation control

— Gain automation

There are applications where you want surfaces that exhibit wrinkles but you
don’t want to spend the time hand animating them. A great example is
clothing. Your clothing moves as you move and it stretches and compresses
and creates wrinkles and folds. But there’s no “uncanny valley” associated
with clothing, as viewers we don’t look to clothing wrinkles to disambiguate a
character’s motivation or emotional expression. You don’t need to have super
fine grain control over its animation like you’d want for a character’s face. For
many applications, all that’s important is that wrinkles seem plausible. | refer
to these kinds of wrinkles as “dynamic” because they don'’t rely on pre-scripted
animation and thus they don’t need as much artist time to setup.

19

Computing Wrinkle Weights

* Compute triangle area before and after skinning
* Delta area over pre-skinned area is weight
* Weight used to blend in stretch/compress wrinkles

A-/4

Object space World Space
(post-animation)

From DirectX SDK Morph Sample

In order to get a more automated wrinkle system, we have to find a way to
dynamically compute wrinkle weights rather than relying on artists to hand
animate them (as we did with facial wrinkles). One method, which [first saw in
a DirectX 10 SDK demo (Sparse Morph Target demo), is to use a geometry
shader to compute per-triangle wrinkle weights. The weight is computed by
calculating a triangle’s area before and after skinning. You can then find the
delta between these two triangle areas and use it to give you a sense of
whether the triangle is stretching or compressing.

20

Computing Wrinkle Weights

* Compute triangle area before and after skinning

* Delta area over pre-skinned area is weight

* Weight used to blend in stretch/compress wrinkles
vEdgeA OS = input[l].vPositionOS.xyz - input[0].vPositionOS.xyz;

vEdgeB OS = input[2].vPositionOS.xyz - input[0].vPositionOS.xyz;
fArealOs = ((vEdgeA _OS, vEdgeB OS)) * ;

vEdgeA WS = input[l].vPositionWS.xyz - input[0].vPositionWS.xyz;
vEdgeB WS = input[2].vPositionWS.xyz - input[0].vPositionWS.xyz;
fAreawWs = ((vEdgeA WS, vEdgeB WS)) * ;

fWrinkleWeight = ((fAreaOS - fAreaWsS) / fAreaOS, -1,

This can all be done in a geometry shader by passing the object-space and
world-space vertex positions down from the vertex shader. You can then
compute a cross product of two triangle edges to get the area of the triangle in
object-space and world-space. Then subtract the world space area from the
object space area and divide the difference by the object space area. The

result is then clamped to the range -1 to 1 and this gives us our wrinkle weight.

This is exactly the same kind of wrinkle weight that we used for animated
facial wrinkles except this time there are no masks. The weight itself changes
across the surface of the mesh in response to the mesh stretching or
compressing so there’s no need to have explicit wrinkle mask textures.
Blending in the wrinkle maps works exactly as before. The wrinkle weight is -1
when the surface is stretching, 1 when the surface is compressing, and 0
when the area remains the same. Blending in your wrinkle maps works
exactly as before. Of course this is just an approximation, it’s possible that a
triangle is stretching in one direction while compressing in another direction
and the delta area might end up being 0 in which case you wouldn’t see any
wrinkles. But we aren’t trying to get perfect wrinkle response here, we just
want something quick and cheap that gives you an approximate, wrinkly
experience.

21

Wrinkle Demo (Dynamic Weights)

22

Wrinkle weight smoothing

-

* Non-smooth wrinkle weights result in wrinkle & lighting
discontinuities

* We tried a number of different smoothing techniques

The problem with the approach as I've described it so far is that the wrinkle
weights we compute in the geometry shader are computed per-triangle which
results in wrinkle weight discontinuities at triangle edges. So we need a way
to smooth out the wrinkle weights. We tried a number of different smoothing
techniques but in the end we found a vertex smoothing technique that worked
the best. Note: texture smoothing techniques generally result in discontinuities
as UV seams.

23

Vertex Smoothing

Wo+W, +W, +W,
4.0

* Like computing vertex normals from face normals

— Per-vertex wrinkle weight is an average of
surrounding per-face wrinkle weights

The vertex smoothing technique works a lot like computing smooth vertex
normals from triangle face normals. You basically compute a smooth per-
vertex wrinkle weight by taking a weighted average of all the per-face wrinkle
weights connected to that vertex. This method will be nice and smooth across
UV seams (which would be problematic in a texture space smoothing
approach) and can be computed completely on the GPU.

24

Vertex Smoothing

* Compute per-face wrinkle weight as usual
* Geometry shader emits 3 point primitives

— Use vertex ID to compute position

* Points accumulated in wrinkle weight texture

We start by computing a per-face wrinkle weight just as we did before by
comparing the object-space and world-space triangle areas in the geometry
shader. Instead of simply passing the triangle’s wrinkle weight down to the
pixel shader for final shading, we setup the geometry shader to emit three
point primitives. There’s one point primitive for each of the triangles vertices
and they all get the triangle’s wrinkle weight. These point primitives are 1 pixel
x 1 pixel in size and we render them to an off-screen render target.

25

Vertex Smoothing

/_W\:>WWW:>

e Points accumulated in wrinkle weight texture
— Set blend mode to: SRC+DST
— RGB = Wrinkle weight
— ALPHA = 1.0

— Alpha is denominator when it’s time to average wrinkle weights

The render state is setup such that the point primitives are accumulated using
the alpha blend unit. In the pixel shader, the wrinkle weight is put into the
pixel's color channels and we simply put a 1 into the alpha channel. The alpha
channel acts as a counter and keeps track of how many vertices fall into a
given bin (aka pixel). The counter then acts as a denominator when
computing an average weight.

26

Vertex Smoothing

e Points accumulated in wrinkle weight texture
— Set blend mode to: SRC+DST
— RGB = Wrinkle weight
— ALPHA = 1.0

— Alpha is denominator when it’s time to average wrinkle weights

As more triangles pass through the pipeline, shared vertices (the red and blue
vertices in the diagram) end up going to the same location in the off-screen
render target and thus their weights all get accumulated into the same pixel
location. Because we’ve put weights into the color channel and 1 into the
alpha channel of each point, in the end we get an accumulation of all the
weights for a given vertex in the render target’s color channels and the alpha
channel will ultimately keep track of how many points landed on a given pixel.
The average wrinkle weight for given vertex is then simply the accumulated
weight (in the color channel) divided by the alpha channel.

27

Vertex Smoothing

* Render time
— Vertex shader fetches per-vertex wrinkle weight

— Divide by alpha to get average wrinkle weight

When it comes time to render the actual mesh, in the vertex shader we can
look up a smooth wrinkle weight for each vertex. The wrinkle weight is passed
down to the pixel shader and so its get interpolated across each triangle and
you end up with nice, smooth wrinkle weights across your mesh.

28

Gotcha: Vertex ID

* Vertex ID act’s as a 2D array index
— Projected position for point primitives
— Texture UV when rendering final mesh

* Based on vertice’s index in vertex buffer

* Consider what happens at texture seams

Computing the point primitives’s locations when rendering them to the off-
screen render target: The obvious method of using D3D10’s VertexID value,
and doing some math based on the render-target’s dimensions to turn the ID
into a 2D array index (or screen space position), doesn’t actually work out as
you might expect. The problem is that D3D10’s Vertex ID is that vertex’s
Vertex Buffer index. In other words, the VertexID is that vertex’s position in its
Vertex Buffer. This is a problem because at UV seams your Vertex Buffer
must contain two separate vertices.

29

Spatial hash as Vertex ID

4

o At , vertices have different UVs
— Vertex Buffer has two entries for each vertex on UV seam
— D3D10 will give you two different VertexIDs
— Results in wrinkle weight discontinuities
* Roll your own Vertex ID
— Perfect hash based on object space vertex position
— Now UV seams don’t matter

For example, the vertices marked with yellow arrows lie on a UV seam. The
UV coordinates are different on either side of this seam and therefore these
two triangles do not actually share any vertices as far as the vertex buffer is
concerned. These vertices may have the same object-space positions but
because there is a UV space discontinuity here, there must be two red vertices
and two blue vertices in the vertex buffer (each with different UV coordinates).
Thus the VertexID that D3D10 gives you will be different and the red and blue
marked vertices will not always be accumulated in the same bins. This results
in the same artifact that the texture smoothing approach had, there will be
wrinkle weight discontinues here because the wrinkle weights will not smooth
across this boundary. The way we worked around this issue was by adding
support to our mesh preprocessor for Vertex IDs based on a perfect spatial
hash. We simply iterate over the vertices in our mesh and give vertices with
different object space positions unique IDs without looking at any of the other
vertex attributes (such as UVs). So as long as two vertices have the same
object space position, they will get the same spatial hash ID. This results in
the red and blue vertices always going to their respective bins regardless
whether they come in as part of the light gray triangle or the dark gray triangle.

30

Vertex Smoothing Results

~ ~

Vertex ID Spatial Hash Vertex ID

 Smooth across UV seam

31

Weighted Average

* Faces should not equally influence a vertex
* Instead of linear average, use weighted average
— Scale wrinkle weight by inner-angle of vertex

— Put angle into alpha channel

Earlier | told you that when accumulating the wrinkle weights in the off-screen
render target that you should put a 1 into the alpha channel to keep track of
how many vertices fell into a given bin. If you do that you will essentially
compute a linear average of all the wrinkle weights that fall into a given bin.
We found that we got slightly better results by weighting the wrinkle weight
that goes out with each vertex (or point primitive) by the triangles inner angle
at that vertex. You then put this same angle weight into the alpha channel and
ultimately end up dividing the accumulated, weighted wrinkle weights by the
accumulated angle weights.

32

Dynamic Wrinkle Demo

Demo again with vertex smoothing of wrinkle weights.

33

Conclusion

* Animated wrinkles
— System of masks and weights

— Gives characters compelling facial expression

* Dynamic wrinkles

— Automatic system... setit up and let it go

— Add detail and animation/movement cues

34

Questions?

Email Me:

chris.oat@amd.com

Download Slides & Course Notes:

http://www.ati.amd.com/developer

35

APPENDIX

36

Texture Smoothing

Use UVs as projected vertex positions
— Un-wraps mesh into texture space
Draw wrinkle weights into render target
Blur the render target

Use blurred weights as wrinkle weights

The first smoothing method we tried was a very simple, straight forward
texture space smoothing approach. This smoothing technique works by un-
wrapping the mesh and rendering the per-triangle wrinkle weights into the
mesh’s texture space. This is pretty easy to do, you simply scale and bias
your UVs so that they are in the range [-1,1] and then use them as projected
vertex positions.

37

Texture Smoothing

Use UVs as projected vertex positions
— Un-wraps mesh into texture space
Draw wrinkle weights into render target
Blur the render target

Use blurred weights as wrinkle weights

Once you have the per-triangle wrinkle weights in a texture, you can apply
your favorite blurring technique to smooth out the wrinkle weights. As you can
see here, we were able to eliminate all the faceting seen in the original wrinkle
weight texture (on the left). The texture on the right was generated using a 13
tap Poisson disc blur kernel.

38

Texture Smoothing

Use UVs as projected vertex positions
— Un-wraps mesh into texture space
Draw wrinkle weights into render target
Blur the render target

Use blurred weights as wrinkle weights

We can then apply our blurred wrinkle map texture to mesh and you can see
that the wrinkle weights are nice and smooth. You don’t see any of those
harsh discontinuities that you saw before.

39

Texture Smoothing

GOOD: Simple — everyone knows how to blur ©

GOOD: Cheap — you can get away with small render targets
GOOD: Flexible — choose your own blur kernel

BAD: Texture seams can be problematic

— Results in discontinuities

The first smoothing method we tried was a very simple, straight forward
texture space smoothing approach. Once you have the geometry shader that
computes the per-triangle wrinkle weights, extending your system to include a
texture space smoothing step is fairly straightforward. This is also rather
inexpensive addition to the basic non-smooth wrinkle shader. You can
actually get away with very low resolution wrinkle weight textures so the
additional cost of rendering to the renderable texture and then blurring and
sampling the final smoothed wrinkle weights incurs a fairly nominal
performance cost.

The one problem we had with this technique was that it doesn’t deal with UV
seams very well. On some of our meshes it worked fine (which is why |
wanted to include it in my talk today) but there were some cases where UV
seams did result in some visual disconinuities. The problem is that adjacent

surface regions on the mesh are not necessarily adjacent in texture UV space.

40

Texture Smoothing

GOOD: Simple — everyone knows how to blur ©
GOOD: Cheap — you can get away with small render targets
GOOD: Flexible — choose your own blur kernel

BAD: Texture seams can be problematic
— Results in discontinuities

For example there are UV seams near the jacket’s shoulders and so wrinkle

weights don’t get blurred across the shoulders and onto the upper arms of the
jacket. This results in lighting discontinuities once you blend the wrinkle map

into the normal map and use it for lighting and it can be a rather severe artifact
in some situations. So again, if you don’t have a lot of UV seams or if your UV
seams are not in prominent places, this very well may not be an issue for you.
If these seams do create a visual artifacts for you (as they did for us on Ruby’s

jacket) then you can use a vertex smoothing technique that completely ignores
UVs.

41

Hint: Rest Pose Wrinkles

* Q: What if mesh should be wrinkled in rest pose?

* A: Artist paint rest pose wrinkle weight bias
— Paint vertex colors in Maya/Max/etc

— Color acts as wrinkle weight bias

* Bias towards compress or stretch

One last snag that we ran into, which is independent of the smoothing
technique that you ultimately choose, is that the rest pose of your mesh (i.e.
the object space pose of your mesh) may be such that you expect the surface
to be wrinkled. For example, in the image here we see the jacket in its rest
pose. Any time the mesh passes through this pose, the geometry shader will
compute a wrinkle weight of 0 but in fact there are places on this mesh where
we might expect there to be wrinkles even when its in this rest pose. One
solution to this is to allow artists to paint vertex colors into the mesh that
essentially act as wrinkle weight biases. So in this jacket mesh you might
paint a wrinkle bias into the shoulder regions so even in the rest pose there
will be wrinkles. Its not until the mesh is oriented such that the triangles in the
shoulder regions expand in area that we get “no wrinkles” in the shoulder
areas.

We actually just ended up ignoring this issue in the end but | wanted to
mention it just incase it's a significant issue for you.

42

