
Ambient Aperture Lighting

Christopher Oat
3D Application Research Group, AMD

Pedro V. Sander
Hong Kong University of Science and Technology

Figure 1: A terrain is rendered in real-time and shaded using the ambient aperture lighting technique described in this paper.

Abstract
This paper introduces a new real-time shading model that
uses spherical cap intersections to approximate a surface’s
incident lighting from dynamic area light sources. Our
method uses precomputed visibility information for static
meshes to compute illumination with approximate high-
frequency shadows in a single rendering pass. Because this
technique relies on precomputed visibility data, the mesh
is assumed to be static at render time. Due to its high
efficiency and low memory footprint this method is highly
suitable for games.

1 Introduction and related work
The problem of lighting complex scenes realistically and ef-
ficiently is of vital importance to real-time computer graph-
ics applications. In this paper we present a new shading
model that approximates incident lighting from a dynamic
area light source. This method provides approximate high-
frequency shadows for static models while only requiring a
single rendering pass. We achieve this by approximating
both the light source and surface visibility using spherical
caps. At render time, we compute their intersection to es-
timate the amount of incident light. The ambient aperture
shading model was developed with real-time terrain render-
ing in mind (see Figure 1 for an example), but it may be
used for other applications where fast, approximate lighting
from dynamic area light sources is desired.

There are several methods for determining whether a par-
ticular point on the surface is in shadow. Shadow map-
ping [Wil78] is a very common approach to perform such
computation in real-time applications. However, shadow
mapping large terrains is frequently impractical because it
requires transforming and rasterizing the terrain data mul-
tiple times per frame. Additionally, shadow maps are ill

suited for terrain rendering as they do not allow for area
light sources such as the sun and the sky. Finally, shadow
maps exhibit aliasing artifacts, particularly when used with
large scenes such as terrains. Horizon mapping techniques
for rendering self-shadowing terrains in real-time only al-
low point or directional light sources [Max88]. Precomputed
Radiance Transfer (PRT) allows for area light sources but
assumes low-frequency lighting environments [SKS02].

Our approach allows for object self-shadowing from dynamic
area light sources with the caveat that the object is not de-
formable (only rigid transformations are supported). Our
technique stores a small amount of precomputed visibility
data for each point on the mesh. The visibility data approx-
imates contiguous regions of visibility over a point’s upper
hemisphere using a spherical cap (Figure 2). This spher-
ical cap acts as a circular aperture for incident lighting.
The aperture is oriented on the hemisphere in the direction
of average visibility and prevents light originating from oc-
cluded directions from reaching the surface point being ren-
dered. At render time, area light sources are projected onto
the point’s upper hemisphere and are also approximated as
spherical caps. Direct lighting from the area light source is
computed by determining the area of intersection between
the visible aperture’s spherical cap and the area light’s spher-
ical cap. The overall diffuse response at the point is com-
puted by combining the area of intersection with a diffuse
falloff term.

The algorithm comprises of two stages. In a preprocessing
stage, a contiguous circular region of visibility is approxi-
mated for each point on the surface of the model (Section
2). The data can be computed per texel and stored in a tex-
ture map, or per vertex and incorporated into the model’s
vertex buffer. Then, at render time, a pixel shader computes
the amount of light that enters this region of visibility, and
uses this result to shade the model (Section 3).

2 Preprocessing
Given a surface point – represented by a vertex on a mesh
or by a texel in the texture domain – we wish to find its
approximate visible region. The visible area at a point p
is found by integrating a visibility function over the hemi-
sphere. The visibility function evaluates to 1 for rays that do

Figure 2: A spherical cap approximates visibility at a surface
point (left). The visibility region acts as an aperture which
blocks light from occluded directions (right).

Figure 3: The intersection area of two spherical caps is a
function of the arc length of their radii (rp, rl) and arc length
of the distance d between their centroids.

not intersect the scene and to 0 otherwise. The percentage
of visibility is then scaled by the area of a unit hemisphere
and results in the solid angle of the visible region:

Ap = 2π

Z
Ω

V (p, ω) dω

This visible area is used as our aperture area. We do not
store the area directly but instead store the arc length of
a spherical cap of equivalent area, which is used at render
time:

rp = cos−1

�
−Ap

2π
+ 1

�

The spherical cap’s radius is a single floating point number
that must be stored with the mesh (either per-vertex or per-
texel).

The visible region’s orientation on the hemisphere is deter-
mined by finding the average direction for which the visibil-
ity function evaluates to 1 (a.k.a. bent normal):

~Vp =

Z
Ω

V (p, ω)ω dω

This gives us an average direction of visibility and serves as
our aperture’s orientation on the surrounding hemisphere.
This direction is stored as a three component vector.

3 Rendering
At render time, for each pixel, the aperture visibility data is
retrieved from a texture look-up or passed in per vertex and
interpolated by the rasterizer. For highly tesselated models
such as the terrain from Figures 1 and 6, storing the infor-
mation per vertex produces acceptable results.

Next we describe our rendering algorithm which, for each
pixel, seeks to compute the intersection between the precom-
puted circular visibility region and the circular light source
(projected area light). Then, we describe an optimization
which significantly reduces computation time while achiev-
ing nearly identical qualitative results.

3.1 Intersecting spherical caps

For each pixel, the spherical area light source is projected
onto the hemisphere and the radius of the light’s enclosing
spherical cap is computed. The amount of light that reaches
a point is determined by computing the area of intersec-
tion between the precomputed spherical cap representing the

Figure 4: Spherical cap intersection as a function of distance
between spherical cap centers. Case 1: One cap entirely
overlaps the other, full intersection occurs. Case 2: The full
intersection function is evaluated to find the area of inter-
section between partially overlapping spherical caps. Case
3: Their intersection area is zero.

Figure 5: The aperture’s spherical cap is intersected with a
light source’s spherical cap (left). A plot of the two spherical
caps along with the Lambertian falloff function (right).

aperture of visibility, and the spherical light source as shown
in Figure 3. The area of intersection for two spherical caps
is computed as follows:8><
>:

2π(1− cos(min(rp, rl))) if min(rp, rl) ≤ max(rp, rl)− d,

0 if rp + rl ≤ d,

L(d, rp, rl) otherwise

where d = cos−1(Vp · Vl), ~Vp and rp are the precomputed

parameters described in the previous section, and ~Vl and rl

are light vector and light source radius, respectively. The
three cases of the piecewise function above represent full
intersection, no intersection, and partial intersection. In the
case of full intersection, the intersection area is the area of
the smaller of the two caps. In the case of partial intersection
the intersection area is defined by

L(d, rp, rl) = 2π − 2π cos(rp)− 2π cos(rl)

− 2 cos−1

�
cos(d)− cos(rp) cos(rl)

sin(rp) sin(rl)

�

+ 2 cos(rp) cos−1

�
− cos(rl) + cos(d) cos(rp)

sin(d) sin(rp)

�

+ 2 cos(rl) cos−1

�
− cos(rp) + cos(d) cos(rl)

sin(d) sin(rl)

�

which is a simplified form of the result from [TV01].

Once the area of intersection is found, the net diffuse re-
sponse is approximated by scaling the area of intersection
by a Lambertian coefficient (described in Section 3.3).

3.2 Optimization

The spherical cap intersection function L(d, rp, rl) may be
too expensive to solve directly. Instead of solving this ex-
pensive function, it may be desirable to use a less expensive
approximation. We considered various approximation func-
tions. Because the intersection function exhibits a smooth
falloff with respect to increasing cap distance (Figure 4), the
smoothstep() function is an appropriate approximation:

(a) Exact intersection (22fps)

(b) Approximate intersection (39fps)

(c) Color-coded penumbra region

Figure 6: Comparison between the exact and approxi-
mate intersection computation on a 300,000 triangle terrain
model.

(2π − 2π cos (min (rp, rl))) ∗

smoothstep

�
0, 1, 1− d− |rp − rl|

rp + rl − |rp − rl|

�

where

smoothstep(a, b, x) = −2

�
x− a

b − a

�3

+ 3

�
x− a

b − a

�2

The smoothstep(a, b, x) function makes a gradual transition
from 0 to 1 between the values a and b, and has a slope of 0 at
these threshold points. It returns 1 when a full intersection
occurs and 0 when no intersection occurs.

The result of smoothstep() is scaled by the area of the
smaller spherical cap so that the end result is a smooth tran-
sition between full intersection and no intersection.

Optimization results Empirically, we did not notice any
significant qualitative difference between using this approx-
imation and the actual intersection function. Figure 6 com-
pares the exact intersection function and its approximation.
We used an ATI Radeon X800 and a screen resolution of
1024 × 768 for this comparison. Note that the visual differ-
ence is insignificant and the approximate result is 77% faster
on a mainstream GPU.

3.3 Lighting computation

Direct lighting Knowing the area of intersection between
the aperture’s spherical cap and the light source’s spherical
cap is not enough to compute lighting at a surface point. It
simply represents how much unoccluded light arrives at the
point. A given area of intersection results in approximate

diffuse reflection depending on its orientation relative to the
point’s surface normal. Therefore we must take Lambert’s
Cosine Law into account. The exact solution would involve
convolving the intersection area with a cosine kernel, but this
would be too expensive to compute. Instead, we account for
the Lambertian by first finding a vector from the point we
are shading to the intersection region’s centroid (Figure 5):

w =
rl − rp + d

2d
~Vi = (w) ~Vp + (1− w)~Vl

We then compute the dot product between this intersection
vector and the point’s geometric normal. This dot product
is used to scale the incoming light and it results in a Lamber-
tian falloff as the area of intersection approaches the horizon.
This approach assumes a constant Lambertian term in the
area of intersection and is a reasonable approximation for
light sources that cover a small portion of the hemisphere,
such as the sun.

We have also considered using a 2D lookup table that con-
tains the integrated Lambertian over the spherical cap for
varying altitudes and radii, as described in [KL05]. How-
ever, as opposed to their application which uses this method
to add shadows, we use this result to add light from small
light sources. For our application, we have found that by
simply using the centroid approximation we get nearly iden-
tical results for reasonable light source radii, such as that of
the sun.

Ambient lighting The above result gives us a nice approxi-
mation of high-frequency, direct, diffuse lighting on our mesh
but it does not handle indirect lighting. For outdoor lighting
scenarios, indirect light scattering into our aperture could be
significant and this needs to be accounted for in our shading
model. The indirect sky light can be approximated by filling
the empty portion of our aperture with ambient light from
the sky. Once the area of the light-aperture intersection is
found, we can subtract this area from the aperture’s total
area to determine how much of the aperture is not covered
by the sun. We can use an average sky color for our ambient
light or another suitable approximation. This method’s ad-
vantage is that it does not destroy scene contrast by adding
ambient light in areas that really should be dark because
they are mostly occluded from the outside world.

Lighting results Figure 7 shows our approach compared to
PRT with 6th order spherical harmonic coefficients, bent
normal, and the exact result, computed by ray tracing. The
first three methods have relatively low storage requirements
and only require a single pass on the geometry at runtime,
thus being very practical. Note that while our spherical cap
approximation is not strictly correct in many cases, such as
this cylinder example (Figure 7, left), it does yield results
that have more realistic and well defined shadows when com-
pared to PRT and bent normal. It is specially useful for
terrain scenes (Figure 7, right).

4 Limitations
Ambient aperture lighting makes simplifying assumptions
and approximations in order to reduce lighting computations
when rendering with dynamic area light sources. There are
certain cases where our assumptions break down and the
shading model produces artifacts such as incorrect shadow-
ing. The most significant assumption is that the visible re-
gion for any point on a mesh is both contiguous and circular.
This is generally a good approximation for terrains, but it

B
en

t
n
o
rm

a
l

P
R
T

O
u
r

m
et

h
o
d

G
ro

u
n
d

tr
u
th

r = 0.001 r = 0.064 r = 0.314 r = 0.785 r = 0.064

Figure 7: A simple didactic scene illuminated by spherical light sources of varying sizes using our ambient aperture approach,
bent normal, PRT with 6th order spherical harmonic coefficients and ground truth (left). The same comparison for a terrain
mesh using a light source that is roughly the size of the sun (right). Note that when using the bent normal method, the light
source size does not affect the result of the computation.

Figure 8: The visible region is a band around the horizon
which cannot be closely approximated by a spherical cap.

fails to handle other cases such as that of a sphere over a
plane (Figure 8).

5 Summary and future work
A real-time shading model that allows for dynamic area light
sources was presented. Our method provides approximate
high-frequency shadows while only requiring a single ren-
dering pass of the geometry. This technique is well suited
for outdoor environments lit by dynamic spherical area light
sources (such as the sun), and is particularly useful for real-
time terrain rendering. Ambient aperture lighting makes
several simplifying assumptions and mathematical approxi-

mations to reduce the computational complexity and storage
costs associated with other real-time techniques that allow
for dynamic area light sources.

Acknowledgements
We would like the thank the members of AMD’s 3D Appli-
cation Research Group for very fruitful discussions.

References
Kontkanen J., Laine S.: Ambient occlusion fields. In ACM Sympo-

sium on Interactive 3D Graphics and Games (2005).

Max N. L.: Horizon mapping: shadows for bump-mapped surfaces.

The Visual Computer 4, 2 (1988), 109–117.

Sloan P.-P. J., Kautz J., Snyder J.: Precomputed radiance transfer

for real-time rendering in dynamic, low-frequency lighting environ-

ments. ACM Trans. Graph. 21, 3 (2002), 527–536.

Tovchigrechko A., Vakser I. A.: How common is the funnel-like

energy landscape in protein-protein interactions? Protein Sci. 10

(2001), 1572–1583.

Williams L.: Casting curved shadows on curved surfaces. In SIG-

GRAPH ’78: Proceedings of the 5th annual conference on Com-

puter graphics and interactive techniques (New York, NY, USA,

1978), ACM Press, pp. 270–274.

