
GPU-Based Scene Management for Rendering Large Crowds

Joshua Barczak
AMD, Inc.

Natalya Tatarchuk
AMD, Inc.

Christopher Oat
AMD, Inc.

1 Introduction

Many rendering scenarios, such as battle scenes or urban environ-
ments, require rendering of large numbers of autonomous charac-
ters. Crowd rendering in large environments presents a number of
challenges, including visibility culling, animation, and level of detail
(LOD) management. These have traditionally been CPU-based tasks,
trading some extra CPU work for a larger reduction in the GPU load,
but the per-character cost can be a serious bottleneck. Furthermore,
CPU-side scene management is difficult if objects are simulated and
animated on the GPU. We present a practical solution that allows ren-
dering of large crowds of characters, from a variety of viewpoints,
with stable performance and excellent visual quality. Our system uses
DirectX10 R© functionality to perform view-frustum culling, occlusion
culling, and LOD selection entirely on the GPU, allowing thousands
of GPU-simulated characters to be rendered with full shadows in arbi-
trary environments. To our knowledge this is the first system presented
that supports this functionality.

2 Scene Management

We start with a vertex buffer containing all of the per-instance data
needed to render each character, such as character positions and orien-
tations. In our case, this information is obtained from a GPU-based
crowd simulation, but a CPU-based simulation or user input could
also be used. A key idea behind our system is the use of geome-
try shaders that act as filters for a set of character instances. Given
the instance data, we want to generate a set of buffers containing the
visible instances at each level of detail. We do this by repeatedly
rendering the instances as point primitives, using a geometry shader
to filter the stream by re-emitting points that pass a particular test.
Multiple filtering passes can be chained together by using successive
DrawAuto calls, and different tests can be set up simply by using dif-
ferent shaders.

2.1 Instance Culling

It is straightforward to implement view-frustum culling using a stream
filtering pass, as described above. In a frustum culling pass, the ver-
tex shader performs a frustum intersection test against the character
bounding sphere, and the geometry shader re-emits characters that pass
the test.

A unique benefit of our method is that we can also perform occlusion
culling by examining the depth buffer in a vertex shader, and compar-
ing it to the minimum depth of the character’s bounding volume. This
allows culling against arbitrary occluders in dynamic environments,
without preprocessing, and without the use of queries or predication,
which are too expensive to apply per-instance. Prior to culling, we
build a Hierarchical Z (Hi-Z) image [Greene et al. 1993] using the in-
formation contained in the Z buffer. At cull-time, each object chooses
a MIP level in the Hi-Z image based on the projected size of its bound-
ing volume, and fetches a fixed number of texels for the occlusion test.

2.2 LOD Selection

After culling, it is still necessary to group visible instances by LOD.
In general the number of LODs can be selected due to the size or the
complexity of the environment and the number of characters rendered.
In our system, we use a static, three-level LOD scheme, in which
the distance to the object centroid determines LOD. LOD sorting is
performed by using three successive filtering passes into three output
buffers, where each pass emits only the instances that fall into a partic-
ular LOD bucket. Note that the culling tests are performed only once
per instance, and the results are re-used during the LOD passes.

Figure 1: A crowd of GPU-simulated characters (left). Characters
are color coded by LOD (right).

3 Rendering
After the LOD filtering passes, a GPU query is used to read the num-
ber of instances for each LOD, and separate DrawInstanced calls are
issued to render the LOD groups. The readback of the instance count is
necessary in order to pass the count to the DrawInstanced calls, but the
GPU stall it introduces can be avoided if additional rendering work is
submitted prior to the readback. We use hardware tessellation and dis-
placement mapping for the closest LOD for high amount of details in
close-ups, conventional rendering for the middle LOD, and simplified
geometry and shaders for the furthest LOD rendering. To animate our
characters, we sample the skeletal animations for each animation cy-
cle (running, digging, etc), and pack the resulting curves into a texture
array which is sampled by the characters’ vertex shaders. This allows
us full animation control for each character directly on the GPU.

4 Shadows
High quality rendering system requires dynamic shadows cast by char-
acters onto the environment and themselves. To manage shadow map
resolution, our system implements Parallel Split Shadow Maps [Zhang
et al. 2006]. The view-frustum test described in Section 2.1 is used
to ensure that only characters that are within a particular parallel split
frustum are rendered. Occlusion culling could also be used for shadow
maps as well, but we do not do this in our system, because only char-
acters and smaller scene elements are rendered into the shadow maps
and there is little to cull the characters against (shadows cast by terrain
are handled separately). We use aggressive filtering for generation of
soft shadows. This allows us to use further mesh simplification for the
LOD rendered into shadow maps. For characters in the higher-detail
shadow frusta, we use the same simplified geometry that is used for the
most distant level of detail during normal rendering. For more distant
shadows, we can use a more extreme simplification.

References
GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical z-

buffer visibility. In SIGGRAPH ’93: Proceedings of the 20th an-
nual conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, 231–238.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-split
shadow maps for large-scale virtual environments. In VRCIA ’06:
Proceedings of the 2006 ACM international conference on Virtual
reality continuum and its applications, ACM, New York, NY, USA,
311–318.


