
GPU-based Scene Management
for Rendering Large Crowds

Joshua Barczak, Natalya Tatarchuk,
Christoper Oat

Outline

•  Motivation

•  GPU Crowds

–  Management

–  Rendering

•  Conclusion

Motivation

Motivation

Scene Management

GPU Scene Management

•  Vertex buffer containing all per-instance data

–  GPU-based crowd simulation

–  CPU-based simulation works too

•  Need to perform typical scene management tasks

–  Frustum cull

–  Occlusion cull

–  Several discrete LODs

–  Parallel split shadow map frustum selection

•  How do we move all this to GPU?

Geometry Shaders as Filters

•  Act on instances
•  A set of point primitives (instance data) as input
•  Re-emit only points that pass a specific test

–  Discard the rest
–  DrawAuto used to chain multiple filters

Stream filtering using Stream Out

Stream out
Buffer

Filter	

(Geometry	
 Shader)	

Point
Primitive
Stream

•  Act on instances
•  A set of point primitives (instance data) as input
•  Re-emit only points that pass a specific test

–  Discard the rest
–  DrawAuto used to chain multiple filters

Stream filtering using Stream Out

Stream out
Buffer

Filter	

(Geometry	
 Shader)	

Point
Primitive
Stream

•  Act on instances
•  A set of point primitives (instance data) as input
•  Re-emit only points that pass a specific test

–  Discard the rest
–  DrawAuto used to chain multiple filters

Filters Manage Crowd Complexity

• Different filters for:
– View frustum culling
– Occlusion culling

– LOD Selection
– Shadow frustum selection

View Frustum Culling

•  Filter removes characters outside view frustum

– Checks for intersection between character’s
bounding volume and the view frustum

View Frustum Culling

•  Filter removes characters outside view frustum

– Checks for intersection between character’s
bounding volume and the view frustum

–  If test passes, character is in view: emit it

–  If test fails, character is out of view: discard it

Stream out
Buffer

Filter	

(Geometry	
 Shader)	

Point
Primitive
Stream

View Frustum Culling

•  Filter removes characters outside view frustum

– Checks for intersection between character’s
bounding volume and the view frustum

–  If test passes, character is in view: emit it

–  If test fails, character is out of view: discard it

•  Output is buffer of potentially visible characters

•  Output becomes input to subsequent filters

Occlusion Culling

Stream out
Buffer

Filter	

(Geometry	
 Shader)	

Point
Primitive
Stream

•  Determine which characters are occluded by the
environment or structures

Occlusion Culling

Stream out
Buffer

Filter	

(Geometry	
 Shader)	

Point
Primitive
Stream

•  Determine which characters are occluded by the
environment or structures

•  Filter requires additional input: Hierarchical Depth Image

Hierarchical Depth Image

•  Occlusion Culling

–  Generate hierarchical Z (Hi-Z) buffer from scene
depth buffer [Greene et al 1993]

Hierarchical Depth Image

•  Occlusion Culling

–  Generate hierarchical Z (Hi-Z) buffer from scene
depth buffer [Greene et al 1993]

–  Each character chooses MIP level based on bounding
volume

Hierarchical Depth Image

•  Occlusion Culling

–  Generate hierarchical Z (Hi-Z) buffer from scene
depth buffer [Greene et al 1993]

–  Each character chooses MIP level based on bounding
volume

–  Projected depth of character’s bounding
sphere tested against four texels in
chosen MIP level

LOD Selection

•  Agents filtered using distance from camera to centroid

•  Uses results of culling filters buffer

•  We use three levels of detail

–  Three filter passes into three buffers

•  Parallel Split Shadow Maps [Zhang et al. 2006]

–  Several shadow maps, selected by distance from
camera

Shadows

near 1st split 2nd split far 3rd split

Shadows

•  Appropriate shadow map chosen per-character
based on split distance from camera

•  Character LOD based on split distance
near 1st split 2nd split far 3rd split

Character Rendering

Organize Draw Calls Around Queries

•  Need instance count for issuing the draw call for
each LOD

•  This requires a stream out stats query
–  Can cause significant stall when results are used in

the same frame issuing the query

•  Re-organize the draw-calls to fill the gap
between issuing the query and using the results
–  We perform AI simulation steps

Character Rendering

•  DrawInstanced() call for each LOD

•  Hardware tessellation and displacement mapping for
closest LOD

•  Conventional rendering for middle LOD

•  Simplified geometry for farthest LOD

Character Animation

•  Skeletal animations sampled into texture array

•  Packed animation data sampled by character’s vertex shaders
B

on
es

Time

Conclusions

•  Dealing with large crowds of instanced characters can be
expensive

•  Leverage GPU for crowd management

•  Frustum & visibility culling

•  LOD selection

•  Shadow frustum selection

•  Character animation

Questions?

Occlusion Culling

•  Render all occluders prior to rendering characters

•  Determine which characters are occluded by the
environment or structures

•  Filter requires additional input: Hi-Z map of occluders

Hierarchical Depth Image

•  Hi-Z Map Generation

–  Start with scene’s Z buffer

•  Not a separate depth pass

–  Max of neighboring texels

•  Stored in MIP chain

Hierarchical Depth Image

•  Render into one MIP level while
sampling the previous level

–  Rendering into smaller mip
reducing the larger one

•  Fetch 2×2 neighborhood and
compute max value

•  Fetch additional texels on the odd-
sized boundary

Hierarchical Depth Image

•  Indexing Gotcha!

–  Careful with texel indexing

–  Use Load() with intearray
indices

GS Filtering for LOD Selection

•  Used a discrete LOD scheme

–  Each LOD is selected by character’s distance to
camera

•  Three successive filtering passes

–  Separate the characters into three disjoint sets

–  LOD parameters easily specified for each set

GS Filtering for LOD Selection

•  Compute LOD selection post culling
–  Only process visible characters

–  Culling results are only computed once and re-used

•  Render closest LOD using tessellation and
displacement

•  Conventional rendering for middle LOD

•  Simplified geometry and shaders for furthest
LOD

