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Introduction

• Sorting random point data into bins/buckets

 Unsorted input

 Points binned in sorted order

• This is a key operation in spatial data 
structure construction
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Motivation

Many GPU applications need items sorted into bins/buckets:
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

[Purcell et al. 2003]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

[Bell et al. 2005] [Harada et al. 2007]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

[Shopf et al. 2008]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

[Yasuda et al. 2008]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

Previous approaches:

 CPU/GPU Hybrid

 Stencil Routing

 Others… require special compute API
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Grid-Based Spatial Data Structure

• Conceptually, very straightforward

• 1D, 2D & 3D domains all map to paged 2D grid

• Good for uniformly distributed data

 Can be wasteful otherwise

 Use a spatial hash tailored to your expected distribution

• How to fill grid without using atomics?
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Bins on the GPU

• World-space position mapped to 2D grid index

• Bin Counter = color buffer, tracks bin load

• Bin Array = depth texture array, binned item IDs
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Spatial Queries
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Spatial Queries

• Transform point to 2D grid index
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Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter
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Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

• Fetch item IDs from Bin Array

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array



| Efficient Spatial Binning on the GPU | December 12, 200815

Updating Data Structure: Overview

 Binning is a multi-pass algorithm

 Update one slice of Bin Array per pass

 Once binned, points are removed from working set

 Continue until working set is empty

 Overflow is possible & detectable
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Updating Data Structure: Initialization

Initialize data structure

 Clear Bin Counter to 0

 Clear Bin Array to MAX_DEPTH

 Working set is array of all item IDs
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Updating Data Structure: Pass 1

• Bind bin counter & first slice of bin array

• Draw working set as point primitives

• Vertex shader:

 Map item position to 2D bin array index

 Set point’s depth to normalized item ID

• Pixel shader: output “1”

• Depth test: LESS_THAN
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Updating Data Structure: Pass 2…n

• Next slice of bin array bound as depth buffer

• VS: Sample ID from previous slice of bin array

 Reject points less than or equal to previous

• GS: stream out non-rejected points

• PS: write pass number

• Depth test: LESS_THAN
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• VS test ensures only points that haven’t yet been binned 
get streamed-out and rasterized

• Depth test ensures the point with lowest ID gets binned

• Results in points binned in sorted order 

 Like depth peeling

• Stream-out buffer becomes new working set

Results of Pass 2..n
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Outer Loop Termination

• Need to halt algorithm once all items are binned

 Do not query size of stream-out buffer  

 CPU/GPU synchronization results in stalls

• Would like GPU to control execution
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Avoiding Synchronization Stalls

We know max number of iterations 

 Number of bin array slices

Make all the draw calls for the max number of iterations

 Use cascading predicated draw calls

 Use along with “DrawAuto” to issue draws

 Predicate on number of stream-out elements



| Efficient Spatial Binning on the GPU | December 12, 200822

Delayed Reduction

Reduction uses stream out bandwidth

 If only a few points are binned in first few passes…

 Bandwidth usage is heavy

 Streaming out almost entire working set

Use delayed reduction

 Begin reducing after several iterations

 We have found delay of E[Bin Load] works well
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Results

Configuration: AMD reference platform with AMD Athlon™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz. Operating System: Windows Vista® SP1.
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GPU-Particle Demo
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Conclusion

GPU Binning

 Efficient queries

– Early-out on empty bins, known bin load, sorted order

 Overflow detection

 Stream-out reduction of working set

 GPU termination control 

Many applications
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Thank You!

Feel free to email me:

Chris.Oat@amd.com

Questions?
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