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Introduction

• Sorting random point data into bins/buckets

 Unsorted input

 Points binned in sorted order

• This is a key operation in spatial data 
structure construction
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Motivation

Many GPU applications need items sorted into bins/buckets:
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

[Purcell et al. 2003]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

[Bell et al. 2005] [Harada et al. 2007]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

[Shopf et al. 2008]
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Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

[Yasuda et al. 2008]



| Efficient Spatial Binning on the GPU | December 12, 20088

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

Previous approaches:

 CPU/GPU Hybrid

 Stencil Routing

 Others… require special compute API
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Grid-Based Spatial Data Structure

• Conceptually, very straightforward

• 1D, 2D & 3D domains all map to paged 2D grid

• Good for uniformly distributed data

 Can be wasteful otherwise

 Use a spatial hash tailored to your expected distribution

• How to fill grid without using atomics?
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Bins on the GPU

• World-space position mapped to 2D grid index

• Bin Counter = color buffer, tracks bin load

• Bin Array = depth texture array, binned item IDs
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Spatial Queries
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Spatial Queries

• Transform point to 2D grid index
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Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter
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Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

• Fetch item IDs from Bin Array
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Updating Data Structure: Overview

 Binning is a multi-pass algorithm

 Update one slice of Bin Array per pass

 Once binned, points are removed from working set

 Continue until working set is empty

 Overflow is possible & detectable
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Updating Data Structure: Initialization

Initialize data structure

 Clear Bin Counter to 0

 Clear Bin Array to MAX_DEPTH

 Working set is array of all item IDs
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Updating Data Structure: Pass 1

• Bind bin counter & first slice of bin array

• Draw working set as point primitives

• Vertex shader:

 Map item position to 2D bin array index

 Set point’s depth to normalized item ID

• Pixel shader: output “1”

• Depth test: LESS_THAN
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Updating Data Structure: Pass 2…n

• Next slice of bin array bound as depth buffer

• VS: Sample ID from previous slice of bin array

 Reject points less than or equal to previous

• GS: stream out non-rejected points

• PS: write pass number

• Depth test: LESS_THAN
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• VS test ensures only points that haven’t yet been binned 
get streamed-out and rasterized

• Depth test ensures the point with lowest ID gets binned

• Results in points binned in sorted order 

 Like depth peeling

• Stream-out buffer becomes new working set

Results of Pass 2..n
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Outer Loop Termination

• Need to halt algorithm once all items are binned

 Do not query size of stream-out buffer  

 CPU/GPU synchronization results in stalls

• Would like GPU to control execution
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Avoiding Synchronization Stalls

We know max number of iterations 

 Number of bin array slices

Make all the draw calls for the max number of iterations

 Use cascading predicated draw calls

 Use along with “DrawAuto” to issue draws

 Predicate on number of stream-out elements
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Delayed Reduction

Reduction uses stream out bandwidth

 If only a few points are binned in first few passes…

 Bandwidth usage is heavy

 Streaming out almost entire working set

Use delayed reduction

 Begin reducing after several iterations

 We have found delay of E[Bin Load] works well



| Efficient Spatial Binning on the GPU | December 12, 200823

Results

Configuration: AMD reference platform with AMD Athlon™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz. Operating System: Windows Vista® SP1.
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GPU-Particle Demo
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Conclusion

GPU Binning

 Efficient queries

– Early-out on empty bins, known bin load, sorted order

 Overflow detection

 Stream-out reduction of working set

 GPU termination control 

Many applications
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Thank You!

Feel free to email me:

Chris.Oat@amd.com

Questions?
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