
| Efficient Spatial Binning on the GPU | December 12, 20081

Christopher Oat | SIGGRAPH ASIA 2008

Efficient Spatial Binning on the GPU
Parallel Computing for Graphics: Beyond Programmable Shading

| Efficient Spatial Binning on the GPU | December 12, 20082

Introduction

• Sorting random point data into bins/buckets

 Unsorted input

 Points binned in sorted order

• This is a key operation in spatial data
structure construction

| Efficient Spatial Binning on the GPU | December 12, 20083

Motivation

Many GPU applications need items sorted into bins/buckets:

| Efficient Spatial Binning on the GPU | December 12, 20084

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

[Purcell et al. 2003]

| Efficient Spatial Binning on the GPU | December 12, 20085

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

[Bell et al. 2005] [Harada et al. 2007]

| Efficient Spatial Binning on the GPU | December 12, 20086

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

[Shopf et al. 2008]

| Efficient Spatial Binning on the GPU | December 12, 20087

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

[Yasuda et al. 2008]

| Efficient Spatial Binning on the GPU | December 12, 20088

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

Previous approaches:

 CPU/GPU Hybrid

 Stencil Routing

 Others… require special compute API

| Efficient Spatial Binning on the GPU | December 12, 20089

Grid-Based Spatial Data Structure

• Conceptually, very straightforward

• 1D, 2D & 3D domains all map to paged 2D grid

• Good for uniformly distributed data

 Can be wasteful otherwise

 Use a spatial hash tailored to your expected distribution

• How to fill grid without using atomics?

0
1
2
3

4

5

6
7

0 1 2 3

4 5 6 7

3D Domain Paged 2D Grid
[Harris et al. 2003]

| Efficient Spatial Binning on the GPU | December 12, 200810

Bins on the GPU

• World-space position mapped to 2D grid index

• Bin Counter = color buffer, tracks bin load

• Bin Array = depth texture array, binned item IDs

6
4

2

3

51

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Points in World Bin Counter Bin Array

Binning

| Efficient Spatial Binning on the GPU | December 12, 200811

Spatial Queries

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200812

Spatial Queries

• Transform point to 2D grid index

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200813

Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200814

Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

• Fetch item IDs from Bin Array

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200815

Updating Data Structure: Overview

 Binning is a multi-pass algorithm

 Update one slice of Bin Array per pass

 Once binned, points are removed from working set

 Continue until working set is empty

 Overflow is possible & detectable

6
4

2

3

51

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Points on Grid Bin Counter Bin Array

Binning

| Efficient Spatial Binning on the GPU | December 12, 200816

Updating Data Structure: Initialization

Initialize data structure

 Clear Bin Counter to 0

 Clear Bin Array to MAX_DEPTH

 Working set is array of all item IDs

| Efficient Spatial Binning on the GPU | December 12, 200817

Updating Data Structure: Pass 1

• Bind bin counter & first slice of bin array

• Draw working set as point primitives

• Vertex shader:

 Map item position to 2D bin array index

 Set point’s depth to normalized item ID

• Pixel shader: output “1”

• Depth test: LESS_THAN

| Efficient Spatial Binning on the GPU | December 12, 200818

Updating Data Structure: Pass 2…n

• Next slice of bin array bound as depth buffer

• VS: Sample ID from previous slice of bin array

 Reject points less than or equal to previous

• GS: stream out non-rejected points

• PS: write pass number

• Depth test: LESS_THAN

| Efficient Spatial Binning on the GPU | December 12, 200819

• VS test ensures only points that haven’t yet been binned
get streamed-out and rasterized

• Depth test ensures the point with lowest ID gets binned

• Results in points binned in sorted order

 Like depth peeling

• Stream-out buffer becomes new working set

Results of Pass 2..n

| Efficient Spatial Binning on the GPU | December 12, 200820

Outer Loop Termination

• Need to halt algorithm once all items are binned

 Do not query size of stream-out buffer

 CPU/GPU synchronization results in stalls

• Would like GPU to control execution

| Efficient Spatial Binning on the GPU | December 12, 200821

Avoiding Synchronization Stalls

We know max number of iterations

 Number of bin array slices

Make all the draw calls for the max number of iterations

 Use cascading predicated draw calls

 Use along with “DrawAuto” to issue draws

 Predicate on number of stream-out elements

| Efficient Spatial Binning on the GPU | December 12, 200822

Delayed Reduction

Reduction uses stream out bandwidth

 If only a few points are binned in first few passes…

 Bandwidth usage is heavy

 Streaming out almost entire working set

Use delayed reduction

 Begin reducing after several iterations

 We have found delay of E[Bin Load] works well

| Efficient Spatial Binning on the GPU | December 12, 200823

Results

Configuration: AMD reference platform with AMD Athlon™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz. Operating System: Windows Vista® SP1.

| Efficient Spatial Binning on the GPU | December 12, 200824

GPU-Particle Demo

| Efficient Spatial Binning on the GPU | December 12, 200825

Conclusion

GPU Binning

 Efficient queries

– Early-out on empty bins, known bin load, sorted order

 Overflow detection

 Stream-out reduction of working set

 GPU termination control

Many applications

| Efficient Spatial Binning on the GPU | December 12, 200826

Thank You!

Feel free to email me:

Chris.Oat@amd.com

Questions?

| Efficient Spatial Binning on the GPU | December 12, 200827

Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-Base Simulation of Granular Materials. In SCA ‘05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM,
New York, NY, USA, 77-86.

Harada, T., Tanaka, M., Koshizuka, S., and Kawaguchi, Y. 2007. Acceleration of Rigid Body
Simulation using Graphics Hardware. Symposium on Interactive 3D Graphics and Games, Seattle,
April 30 – May 2, 2007.

Harris, M. J., Baxter, W. V., Scheuermann, T., and Lastra, A. 2003. Simulation of Cloud Dynamics
on Graphics Hardware. In HWWS ‘03: Proceedings of the ACM SIGGRAPH/Eurographics
Conference of Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland, 92-101.

Purcell, T. J., Donner, C., Commarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon Mapping
on Programmable Graphics Hardware. In Proceedings of the ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware, Eurographics Association, 41-50.

Shopf, J., Barczak, J., Oat, C., and Tatarchuk, N. 2008. March of the Froblins: Simulation and
Rendering Massive Crowds on Intelligent and Detailed Creatures on the GPU. In SIGGRAPH ‘08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA, 52-101.

Yasuda, R., Harada, T., Kawaguchi, Y. 2008. Real-Time Simulation of Granular Materials Using
Graphics Hardware. Fifth International Conference on Computer Graphics, Imaging and
Visualization, 28-31.

References

| Efficient Spatial Binning on the GPU | December 12, 200828

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

