
| Efficient Spatial Binning on the GPU | December 12, 20081

Christopher Oat | SIGGRAPH ASIA 2008

Efficient Spatial Binning on the GPU
Parallel Computing for Graphics: Beyond Programmable Shading

| Efficient Spatial Binning on the GPU | December 12, 20082

Introduction

• Sorting random point data into bins/buckets

 Unsorted input

 Points binned in sorted order

• This is a key operation in spatial data
structure construction

| Efficient Spatial Binning on the GPU | December 12, 20083

Motivation

Many GPU applications need items sorted into bins/buckets:

| Efficient Spatial Binning on the GPU | December 12, 20084

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

[Purcell et al. 2003]

| Efficient Spatial Binning on the GPU | December 12, 20085

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

[Bell et al. 2005] [Harada et al. 2007]

| Efficient Spatial Binning on the GPU | December 12, 20086

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

[Shopf et al. 2008]

| Efficient Spatial Binning on the GPU | December 12, 20087

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

[Yasuda et al. 2008]

| Efficient Spatial Binning on the GPU | December 12, 20088

Motivation

Many GPU applications need items sorted into bins/buckets:

 Photon Mapping

 Rigid body simulation

 Path finding

 Particle simulation

Previous approaches:

 CPU/GPU Hybrid

 Stencil Routing

 Others… require special compute API

| Efficient Spatial Binning on the GPU | December 12, 20089

Grid-Based Spatial Data Structure

• Conceptually, very straightforward

• 1D, 2D & 3D domains all map to paged 2D grid

• Good for uniformly distributed data

 Can be wasteful otherwise

 Use a spatial hash tailored to your expected distribution

• How to fill grid without using atomics?

0
1
2
3

4

5

6
7

0 1 2 3

4 5 6 7

3D Domain Paged 2D Grid
[Harris et al. 2003]

| Efficient Spatial Binning on the GPU | December 12, 200810

Bins on the GPU

• World-space position mapped to 2D grid index

• Bin Counter = color buffer, tracks bin load

• Bin Array = depth texture array, binned item IDs

6
4

2

3

51

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Points in World Bin Counter Bin Array

Binning

| Efficient Spatial Binning on the GPU | December 12, 200811

Spatial Queries

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200812

Spatial Queries

• Transform point to 2D grid index

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200813

Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200814

Spatial Queries

• Transform point to 2D grid index

• Fetch bin load from Bin Counter

• Fetch item IDs from Bin Array

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Query Point Bin Counter Bin Array

| Efficient Spatial Binning on the GPU | December 12, 200815

Updating Data Structure: Overview

 Binning is a multi-pass algorithm

 Update one slice of Bin Array per pass

 Once binned, points are removed from working set

 Continue until working set is empty

 Overflow is possible & detectable

6
4

2

3

51

0 1 0 0

1 0 0 1

0 0 0 1

0 0 0 2
6

3

1 5

2

4

Points on Grid Bin Counter Bin Array

Binning

| Efficient Spatial Binning on the GPU | December 12, 200816

Updating Data Structure: Initialization

Initialize data structure

 Clear Bin Counter to 0

 Clear Bin Array to MAX_DEPTH

 Working set is array of all item IDs

| Efficient Spatial Binning on the GPU | December 12, 200817

Updating Data Structure: Pass 1

• Bind bin counter & first slice of bin array

• Draw working set as point primitives

• Vertex shader:

 Map item position to 2D bin array index

 Set point’s depth to normalized item ID

• Pixel shader: output “1”

• Depth test: LESS_THAN

| Efficient Spatial Binning on the GPU | December 12, 200818

Updating Data Structure: Pass 2…n

• Next slice of bin array bound as depth buffer

• VS: Sample ID from previous slice of bin array

 Reject points less than or equal to previous

• GS: stream out non-rejected points

• PS: write pass number

• Depth test: LESS_THAN

| Efficient Spatial Binning on the GPU | December 12, 200819

• VS test ensures only points that haven’t yet been binned
get streamed-out and rasterized

• Depth test ensures the point with lowest ID gets binned

• Results in points binned in sorted order

 Like depth peeling

• Stream-out buffer becomes new working set

Results of Pass 2..n

| Efficient Spatial Binning on the GPU | December 12, 200820

Outer Loop Termination

• Need to halt algorithm once all items are binned

 Do not query size of stream-out buffer

 CPU/GPU synchronization results in stalls

• Would like GPU to control execution

| Efficient Spatial Binning on the GPU | December 12, 200821

Avoiding Synchronization Stalls

We know max number of iterations

 Number of bin array slices

Make all the draw calls for the max number of iterations

 Use cascading predicated draw calls

 Use along with “DrawAuto” to issue draws

 Predicate on number of stream-out elements

| Efficient Spatial Binning on the GPU | December 12, 200822

Delayed Reduction

Reduction uses stream out bandwidth

 If only a few points are binned in first few passes…

 Bandwidth usage is heavy

 Streaming out almost entire working set

Use delayed reduction

 Begin reducing after several iterations

 We have found delay of E[Bin Load] works well

| Efficient Spatial Binning on the GPU | December 12, 200823

Results

Configuration: AMD reference platform with AMD Athlon™ 64 X2 Dual-Core Processor 4600+, 2.40GHz, 2GB RAM. GPU: ATI Radeon™ HD 4870 Graphics. Motherboard: ASUSTek M2R32-MVP. Memory: DDR2-800 400 MHz. Operating System: Windows Vista® SP1.

| Efficient Spatial Binning on the GPU | December 12, 200824

GPU-Particle Demo

| Efficient Spatial Binning on the GPU | December 12, 200825

Conclusion

GPU Binning

 Efficient queries

– Early-out on empty bins, known bin load, sorted order

 Overflow detection

 Stream-out reduction of working set

 GPU termination control

Many applications

| Efficient Spatial Binning on the GPU | December 12, 200826

Thank You!

Feel free to email me:

Chris.Oat@amd.com

Questions?

| Efficient Spatial Binning on the GPU | December 12, 200827

Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-Base Simulation of Granular Materials. In SCA ‘05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM,
New York, NY, USA, 77-86.

Harada, T., Tanaka, M., Koshizuka, S., and Kawaguchi, Y. 2007. Acceleration of Rigid Body
Simulation using Graphics Hardware. Symposium on Interactive 3D Graphics and Games, Seattle,
April 30 – May 2, 2007.

Harris, M. J., Baxter, W. V., Scheuermann, T., and Lastra, A. 2003. Simulation of Cloud Dynamics
on Graphics Hardware. In HWWS ‘03: Proceedings of the ACM SIGGRAPH/Eurographics
Conference of Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland, 92-101.

Purcell, T. J., Donner, C., Commarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon Mapping
on Programmable Graphics Hardware. In Proceedings of the ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware, Eurographics Association, 41-50.

Shopf, J., Barczak, J., Oat, C., and Tatarchuk, N. 2008. March of the Froblins: Simulation and
Rendering Massive Crowds on Intelligent and Detailed Creatures on the GPU. In SIGGRAPH ‘08:
ACM SIGGRAPH 2008 classes, ACM, New York, NY, USA, 52-101.

Yasuda, R., Harada, T., Kawaguchi, Y. 2008. Real-Time Simulation of Granular Materials Using
Graphics Hardware. Fifth International Conference on Computer Graphics, Imaging and
Visualization, 28-31.

References

| Efficient Spatial Binning on the GPU | December 12, 200828

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

