
Real-Time 3D Scene
Post-processing
Chris Oat
ATI Research

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Overview

• Image Space Post Processing
– High Dynamic Range Rendering
– Blooms, Tone Mapping and Vignettes
– Depth Of Field
– Heat and Haze

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Photorealistic Rendering
• We seek to mimic the physical properties of real world

illumination and the imaging devices used to capture it
• High Dynamic Range Imaging

– The range and precision of illumination in the real world
far exceeds the values traditionally stored in frame buffers

• Bloom
– The film/sensors in cameras can cause oversaturated

values to bleed into neighboring cells or regions of the film
• Depth of Field

– The optics of cameras don’t capture perfectly crisp images
from the real-world. This is both an artifact and a creative
tool.

• Heat and Haze Effects
– Changes in atmospheric density cause light to bend

producing shimmering effects

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

High Dynamic Range Rendering

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

HDR Rendering Process

Tone
Map

Scene
Geometry

lit with
HDR Light

Probes

Image Space Operations

HDR
Scene

Bloom
Filter +

Displayable
Image

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Frame Postprocessing

Horizontal
Gaussian

Filter

Vertical
Gaussian

Filter

One Pass Each

HDR
Scene

¼ Size
Frame +

Tone
Map

One Final Pass

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Separable Gaussian Filter

• Some filters, such as a 2D
Gaussian, are separable and
can be implemented as
successive passes of 1D filter

• We will do this by rendering
into temporary buffer, sampling
a line or column of texels on
each of two passes

• One center tap, six inner taps
and six outer taps

• Sample 25 texels in a row or
column using a layout as
shown below:

Gaussian Filter

Center Tap (nearest filtering)
Inner Tap
Outer Tap, dependent read
Texel

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Separable Gaussian Blur Part 1
float4 hlsl_gaussian_x (float2 tapZero : TEXCOORD0, float2 tap12 : TEXCOORD1,

float3 tapMinus12 : TEXCOORD2, float2 tap34 : TEXCOORD3,
float2 tapMinus34 : TEXCOORD4, float3 tap56 : TEXCOORD5,
float3 tapMinus56 : TEXCOORD6) : COLOR

{
float4 accum, Color[NUM_INNER_TAPS];
Color[0] = tex2D (nearestImageSampler, tapZero); // sample 0
Color[1] = tex2D (linearImageSampler, tap12); // samples 1, 2
Color[2] = tex2D (linearImageSampler, tapMinus12); // samples -1, -2
Color[3] = tex2D (linearImageSampler, tap34); // samples 3, 4
Color[4] = tex2D (linearImageSampler, tapMinus34); // samples -3, -4
Color[5] = tex2D (linearImageSampler, tap56); // samples 5, 6
Color[6] = tex2D (linearImageSampler, tapMinus56); // samples -5, -6

accum = Color[0] * gTexelWeight[0]; // Weighted sum of samples
accum += Color[1] * gTexelWeight[1];
accum += Color[2] * gTexelWeight[1];
accum += Color[3] * gTexelWeight[2];
accum += Color[4] * gTexelWeight[2];
accum += Color[5] * gTexelWeight[3];
accum += Color[6] * gTexelWeight[3];

. . .

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Separable Gaussian Blur Part 2
. . .

float2 outerTaps[NUM_OUTER_TAPS];
outerTaps[0] = tapZero + gTexelOffset[0]; // coord for samples 7, 8
outerTaps[1] = tapZero - gTexelOffset[0]; // coord for samples -7, -8
outerTaps[2] = tapZero + gTexelOffset[1]; // coord for samples 9, 10
outerTaps[3] = tapZero - gTexelOffset[1]; // coord for samples -9, -10
outerTaps[4] = tapZero + gTexelOffset[2]; // coord for samples 11, 12
outerTaps[5] = tapZero - gTexelOffset[2]; // coord for samples -11, -12

// Sample the outer taps
for (int i=0; i<NUM_OUTER_TAPS; i++)
{

Color[i] = tex2D (linearImageSampler, outerTaps[i]);
}

accum += Color[0] * gTexelWeight[4]; // Accumulate outer taps
accum += Color[1] * gTexelWeight[4];
accum += Color[2] * gTexelWeight[5];
accum += Color[3] * gTexelWeight[5];
accum += Color[4] * gTexelWeight[6];
accum += Color[5] * gTexelWeight[6];

return accum;
}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Tone Mapping

Very Underexposed Underexposed

Good exposure Overexposed

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Tone Mapping Shader
float4 hlsl_tone_map (float2 tc : TEXCOORD0) : COLOR
{

float fExposureLevel = 32.0f;

float4 original = tex2D (originalImageSampler, tc);
float4 blur = tex2D (blurImageSampler, tc);

float4 color = lerp (original, blur, 0.4f);

tc -= 0.5f; // Put coords in -1/2 to 1/2 range

// Square of distance from origin (center of screen)
float vignette = 1 - dot(tc, tc);

// Multiply by vignette to the fourth
color = color * vignette*vignette*vignette*vignette;

color *= fExposureLevel; // Apply simple exposure level
return pow (color, 0.55f); // Apply gamma and return

}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Bloom Filter

• Developed by Masaki Kawase of
Bunkasha Games
• Used in DOUBLE-S.T.E.A.L. (aka

Wreckless)
• From his GDC2003 Presentation: Frame
Buffer Postprocessing Effects in
DOUBLE-S.T.E.A.L (Wreckless)

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Bloom Filter

• Start by downsampling (¼ x ¼ = 1/16)
• Apply small blur filters repeatedly
• More iterations for more blurriness
• Each iteration “Ping-Pongs” between two

renderable textures used for storing
intermediate results

1/16

1/16 1/16

1/16

2/16

2/16

2/16 4/16

2/16

Pixel being Rendered
Texture sampling points

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Iterating Kawase’s Bloom Filter

3rd Iteration2nd Iteration

• Each iteration takes the previous results
as input and applies a new kernel to
increase blurriness

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Bloom Filter
float3 SiWrecklessBloomFilterRGB
(sampler tSource, float2 texCoord, float2 pixelSize, int iteration)
{

float2 texCoordSample = 0;
float2 halfPixelSize = pixelSize / 2.0f;
float2 dUV = (pixelSize.xy * float(iteration)) + halfPixelSize.xy;
float3 cOut;

// Sample top left pixel
texCoordSample.x = texCoord.x - dUV.x;
texCoordSample.y = texCoord.y + dUV.y;
cOut = tex2D (tSource, texCoordSample);

// Sample top right pixel
texCoordSample.x = texCoord.x + dUV.x;
texCoordSample.y = texCoord.y + dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Sample bottom right pixel
texCoordSample.x = texCoord.x + dUV.x;
texCoordSample.y = texCoord.y - dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Sample bottom left pixel
texCoordSample.x = texCoord.x - dUV.x;
texCoordSample.y = texCoord.y - dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Average
cOut *= 0.25f;

return cOut;
}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Iterating Kawase’s Bloom Filter

1 2 3
4 5

S1

S2

S3
S4

S5

0

10

20

30

40

50

60

70

80

90

100

Iteration 1 (3x3)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 2 3 4 5 6 7 8 9
S1

S3

S5

S7
S9

0

10

20

30

40

50

60

70

80

90

100

Iteration 2 (7x7)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1

S5

S9

S13

0

10

20

30

40

50

60

70

80

90

100

Iteration 3 (13x13)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 3 5 7 9

11 13 15 17 19 21 23

S1

S6

S11

S16
S21

0

10

20

30

40

50

60

70

80

90

100

Iteration 4 (21x21)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 4 7

10 13 16 19 22 25 28 31

S1

S9

S17

S25
S33

0

10

20

30

40

50

60

70

80

90

100

Iteration 5 (31x31)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 5 9

13 17 21 25 29 33 37 41 45

S1

S11

S21

S31
S41

0

10

20

30

40

50

60

70

80

90

100

Iteration 6 (43x43)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 6

11 16 21 26 31 36 41 46 51 56

S1

S14

S27

S40
S53

0

10

20

30

40

50

60

70

80

90

100

Iteration 7 (57x57)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

1 7

13 19 25 31 37 43 49 55 61 67 73

S1

S18

S35

S52
S69

0

10

20

30

40

50

60

70

80

90

100

Iteration 8 (73x73)

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

• A few iterations are necessary for
pleasing results

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Light Streak Filter

• Caused by diffraction of incoming light
• Diffraction can happen in the eye’s lens

or some external surface that scatters
light such as a car’s windshield.

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Light Streak Filter
s=0 s=1 s=2 s=3

Pixel being Rendered

Texture Sampling Point
sample weight = a^(b*s)
a = attenuation (about ~0.9 – 0.95)
b = 4^(n-1) (where n = pass)

• Start by downsampling (¼ x ¼ = 1/16)
• Same idea as the bloom: repeatedly apply a small blur

kernel
• Kernel’s shape is based on direction of streak

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Light Streak Filter

Second Pass
s=0 s=1 s=2 s=3

• Every iteration of the filter expands the
kernel in the direction of the streak

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Light Streak Filter

Animating balls are Animating balls are
light sourceslight sources

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Streak Filter Extension

Circular Pattern Windshield groove pattern due to wiper blades

• The direction of the streak can be specified per-pixel
using an image-space map like those above

• Rotation vector <x,y,1>

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Streak Filter Extension

Streaks follow windshield Streaks follow windshield
groove mapgroove map

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Light Streak Shader

float3 SiWrecklessStreakFilterRGB(sampler tSource, float2 texCoord,
float2 pixelSize, float2 streakDirection,
int streakSamples, float attenuation,
int iteration)

{
float2 texCoordSample = 0;
float3 cOut = 0;

float b = pow(streakSamples, iteration);

for (int s = 0; s < streakSamples; s++)
{

// Weight = a^(b*s)
float weight = pow(attenuation, b * s);

// Streak direction is a 2D vector in image space
texCoordSample = texCoord + (streakDirection * b * float2(s, s) * pixelSize);

// Scale and accumulate
cOut += saturate(weight) * tex2D (tSource, texCoordSample);

}

return saturate (cOut);
}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Depth Of Field
ATI Bacteria Screensaver

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Depth Of Field
• Important part of photo-realistic
rendering
• Computer graphics uses a pinhole
camera model
• Real cameras use lenses with finite
dimensions
• See Potmesil and Chakravarty 1981
for a good discussion

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Camera Models

pinhole
lens

thin
lens

circle of
confusion

• Pinhole lens lets only a single ray through
• In thin lens model if image plane isn’t in focal plane,

multiple rays contribute to the image
• Intersection of rays with image plane approximated

by circle

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Real-time Depth Of Field
Implementation On Radeon 9700

• Use MRT to output multiple data – color,
depth and “blurriness” for DOF post-
processing
• Use pixel shaders for post-processing

– Use post-processing to blur the image
– Use variable size filter kernel to approximate

circle of confusion
– Take measures to prevent sharp foreground

objects from “leaking” onto background

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Depth Of Field Using MRT

Pixel Pipeline Output
oC0 oC1

R G B A8 888 Depth Blurriness 1616

• Depth and “blurriness” in 16-bit FP format
• Blurriness computed as function of distance

from focal plane

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Circle Of Confusion Filter Kernel

• Vary kernel size based on the “blurriness” factor

Point in focus Point is blurred

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Elimination Of “Leaking”

•Conventional post-processing
blur techniques cause “leaking”
of sharp foreground objects onto
blurry backgrounds
•Depth compare the samples and
discard ones that can contribute
to background “leaking”

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Semantic Depth Of Field
• Semantic depth of field – sharpness
of objects controlled by “relevance”,
not just depth
• Easy to accommodate with our
technique

– “Blurriness” is separate from depth
• Can be used in game menus or
creatively in real-time cinematics to
focus on relevant scene elements

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Semantic Depth Of Field

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Depth Of Field Shader
float4 hlsl_depth_of_field_loop (float2 centerTap : TEXCOORD0) : COLOR
{

float2 tap[NUM_DOF_TAPS];
float4 Color[NUM_DOF_TAPS];
float2 Depth[NUM_DOF_TAPS];

// Fetch center samples from depth and focus maps
float4 CenterColor = tex2D (ColorSampler, centerTap);
float2 CenterFocus = tex2D (DoFSampler, centerTap);
float fTotalContribution = 1.0f;
float fContribution;
float fCoCSize = CenterFocus.y * gMaxCoC; // Scale the Circle of Confusion

for (int i=0; i<NUM_DOF_TAPS; i++) // Run through all of the taps
{

// Compute tap locations relative to center tap
tap[i] = fCoCSize * gTapOffset[i] + centerTap;
Color[i] = tex2D (ColorSampler, tap[i]);
Depth[i] = tex2D (DoFSampler, tap[i]);

// Compute tap's contribution to final color
fContribution = (Depth[i].x > CenterFocus.x) ? CenterFocus.y : Depth[i].y;
CenterColor += fContribution * Color[i];
fTotalContribution += fContribution;

}

float4 FinalColor = CenterColor / fTotalContribution; // Normalize

return FinalColor;
}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Heat and Haze Effects

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Heat and Haze

• A natural atmospheric effect that
everyone is familiar with
• Light bends as it passes through media

of different densities

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Heat Shimmering

• Hot air is less dense than cool air
• Density effects a medium’s index of refraction
• As hot air rises it is replaced by cooler air thus

changing the way light bends into your line of
sight

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Heat Shimmering

• Render scene into RGBA off-screen buffer
(renderable texture)

– Color into RGB
– Distortion weight into Alpha

• Draw full screen quad to backbuffer
– Sample off-screen buffer to obtain distortion weight
– Use perturbation map to determine perturbation

vector, scale by distortion weight and offset original
texture coordinates

– Growable Poisson Disc filtering using perturbed
texture coordinate (grow disc according to distortion
weight)

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Distortion Weights

• Per-pixel value that determines how
much that pixel should be distorted
• The probability of refraction increases as

light passes through more atmosphere
• Distortion increases with scene depth

– Start by clearing render target’s alpha to 1.0
to indicate maximum depth

– Pixel shader writes per-pixel depth value to
alpha

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Distortion Weights

• Depth serves as a good global distortion
metric but your artists will want more local
control
• Heat geometry may be used to define

areas of high distortion such as the air
above a hot gas vent or behind a jet’s
engine
• Heat textures may be used to animate

distortion weights across heat geometry

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Heat Geometry & Heat Textures

• Per-pixel weights come from Heat Texture
• Weights are Scaled by depth
• Then further scaled by Height (tex coords) and N.V to avoid hard

edges
• Distortion weights are written to Alpha

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Full-Screen Quad

Renderable Texture

Full-Screen Quad
Drawn to Back BufferPerturbation Map

• Full-Screen quad is drawn using off-screen
buffer (renderable texture) and perturbation map
as textures

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Perturbation Maps

Average

• A 2D Vector stored in Red and Green channels
• Scroll Map in two different directions across full-screen

quad and sample twice
• Average both samples then scale and bias to get into

[-1.0, 1.0] range
• Scale vector by distortion weight
• Result is the perturbation vector

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Perturbation Vector

Original <u,v> + Perturbation vector <x,y>

• Perturbation vector is used to offset original texture
coordinate

• Vector’s magnitude is determined by distortion weight
• This new perturbed texture coordinate is used for

dependant read into off-screen buffer

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Growable Poisson Disc

Original <u,v> + Perturbation vector <x,y>

• Center blur kernel at perturbed texture
coordinate
• Grow disc based on distortion weight

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Distortion Shader
float4 main (PsInput i) : COLOR
{

// fetch from perturbation map with scrolling texture coords
float3 vPerturb0 = tex2D (tPerturbationMap, i.texCoord1);
float3 vPerturb1 = tex2D (tPerturbationMap, i.texCoord2);

// scale and bias: (color - 0.5f)*2.0f
vPerturb0 = SiConvertColorToVector(vPerturb0);
vPerturb1 = SiConvertColorToVector(vPerturb1);

// average perturbation vectors
float2 offset = (vPerturb0.xy + vPerturb1.xy) * 0.5f;

// get distortion weight from renderable texture (stored in alpha)
float4 cDistWeight = tex2D (tRBFullRes, i.texCoord0);

// square distortion weight
cDistWeight.a *= cDistWeight.a;

// compute distorted texture coords
offset.xy = ((offset.xy * cDistWeight.a) * fPerturbScale) + i.texCoord0;

// fetch the distorted color
float4 o;
o.rgb = SiPoissonDisc13RGB(tRBFullRes, offset, 1.0f/screenRes.xy, cDistWeight.a);
o.a = 1.0f;
return o;

}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Growable Poisson Disc Shader
float3 SiGrowablePoissonDisc13FilterRGB
(sampler tSource, float2 texCoord, float2 pixelSize, float discRadius)
{

float3 cOut;
float2 poisson[12] = {float2(-0.326212f, -0.40581f),

float2(-0.840144f, -0.07358f),
float2(-0.695914f, 0.457137f),
float2(-0.203345f, 0.620716f),
float2(0.96234f, -0.194983f),
float2(0.473434f, -0.480026f),
float2(0.519456f, 0.767022f),
float2(0.185461f, -0.893124f),
float2(0.507431f, 0.064425f),
float2(0.89642f, 0.412458f),
float2(-0.32194f, -0.932615f),
float2(-0.791559f, -0.59771f)};

// Center tap
cOut = tex2D (tSource, texCoord);
for (int tap = 0; tap < 12; tap++)
{

float2 coord = texCoord.xy + (pixelSize * poisson[tap] * discRadius);

// Sample pixel
cOut += tex2D (tSource, coord);

}
return (cOut / 13.0f);

}

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Summary

• Image Space Post Processing
– High Dynamic Range Rendering
– Blooms, Tone Mapping and Vignettes
– Depth Of Field
– Heat and Haze

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Acknowledgments

• Thanks to…
– Jason Mitchell for contributing slides used

in this presentation
– John Isidoro for the HDR shaders
– Guennadi Riguer for helping with Depth of

Field

Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

For More information

• ATI Developer Relations
– http://www.ati.com/developer

• High Dynamic Range Rendering
– http://www.debevec.org

• Masaki Kawase’s GDC03 Presentation
– http://bunkasha-games.com
– http://www.daionet.gr.jp/~masa

	Real-Time 3D Scene Post-processing
	Overview
	Photorealistic Rendering
	High Dynamic Range Rendering
	HDR Rendering Process
	Frame Postprocessing
	Separable Gaussian Filter
	Separable Gaussian Blur Part 1
	Separable Gaussian Blur Part 2
	Tone Mapping
	Tone Mapping Shader
	Kawase’s Bloom Filter
	Kawase’s Bloom Filter
	Iterating Kawase’s Bloom Filter
	Kawase’s Bloom Filter
	Iterating Kawase’s Bloom Filter
	Kawase’s Light Streak Filter
	Kawase’s Light Streak Filter
	Kawase’s Light Streak Filter
	Kawase’s Light Streak Filter
	Streak Filter Extension
	Streak Filter Extension
	Light Streak Shader
	Depth Of Field
	Depth Of Field
	Camera Models
	Real-time Depth Of Field Implementation On Radeon 9700
	Depth Of Field Using MRT
	Circle Of Confusion Filter Kernel
	Elimination Of “Leaking”
	Semantic Depth Of Field
	Semantic Depth Of Field
	Depth Of Field Shader
	Heat and Haze Effects
	Heat and Haze
	Heat Shimmering
	Heat Shimmering
	Distortion Weights
	Distortion Weights
	Heat Geometry & Heat Textures
	Full-Screen Quad
	Perturbation Maps
	Perturbation Vector
	Growable Poisson Disc
	Distortion Shader
	Growable Poisson Disc Shader
	Summary
	Acknowledgments
	For More information

