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Overview

• Image Space Post Processing
– High Dynamic Range Rendering
– Blooms, Tone Mapping and Vignettes
– Depth Of Field
– Heat and Haze
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Photorealistic Rendering
• We seek to mimic the physical properties of real world 

illumination and the imaging devices used to capture it
• High Dynamic Range Imaging

– The range and precision of illumination in the real world 
far exceeds the values traditionally stored in frame buffers

• Bloom
– The film/sensors in cameras can cause oversaturated 

values to bleed into neighboring cells or regions of the film
• Depth of Field

– The optics of cameras don’t capture perfectly crisp images 
from the real-world.  This is both an artifact and a creative 
tool.

• Heat and Haze Effects
– Changes in atmospheric density cause light to bend 

producing shimmering effects
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High Dynamic Range Rendering
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HDR Rendering Process
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Frame Postprocessing
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Separable Gaussian Filter

• Some filters, such as a 2D 
Gaussian, are separable and 
can be implemented as 
successive passes of 1D filter

• We will do this by rendering 
into temporary buffer, sampling 
a line or column of texels on 
each of two passes

• One center tap, six inner taps 
and six outer taps

• Sample 25 texels in a row or 
column using a layout as 
shown below:

Gaussian Filter

Center Tap (nearest filtering)
Inner Tap
Outer Tap, dependent read
Texel

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
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Separable Gaussian Blur Part 1
float4 hlsl_gaussian_x (float2 tapZero : TEXCOORD0, float2 tap12 : TEXCOORD1,

float3 tapMinus12  : TEXCOORD2, float2 tap34 : TEXCOORD3,
float2 tapMinus34  : TEXCOORD4, float3 tap56 : TEXCOORD5,
float3 tapMinus56  : TEXCOORD6 ) : COLOR

{
float4 accum, Color[NUM_INNER_TAPS];
Color[0] = tex2D (nearestImageSampler, tapZero);      // sample 0
Color[1] = tex2D (linearImageSampler,  tap12);        // samples  1,  2
Color[2] = tex2D (linearImageSampler,  tapMinus12);   // samples -1, -2
Color[3] = tex2D (linearImageSampler,  tap34);        // samples  3,  4
Color[4] = tex2D (linearImageSampler,  tapMinus34);   // samples -3, -4
Color[5] = tex2D (linearImageSampler,  tap56);        // samples  5,  6
Color[6] = tex2D (linearImageSampler,  tapMinus56);   // samples -5, -6

accum = Color[0] * gTexelWeight[0]; // Weighted sum of samples
accum += Color[1] * gTexelWeight[1];
accum += Color[2] * gTexelWeight[1];
accum += Color[3] * gTexelWeight[2];
accum += Color[4] * gTexelWeight[2];
accum += Color[5] * gTexelWeight[3];
accum += Color[6] * gTexelWeight[3];

. . .   
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Separable Gaussian Blur Part 2
. . .

float2 outerTaps[NUM_OUTER_TAPS];
outerTaps[0] = tapZero + gTexelOffset[0];   // coord for samples   7,   8
outerTaps[1] = tapZero - gTexelOffset[0];   // coord for samples  -7,  -8
outerTaps[2] = tapZero + gTexelOffset[1];   // coord for samples   9,  10
outerTaps[3] = tapZero - gTexelOffset[1];   // coord for samples  -9, -10
outerTaps[4] = tapZero + gTexelOffset[2];   // coord for samples  11,  12
outerTaps[5] = tapZero - gTexelOffset[2];   // coord for samples -11, -12

// Sample the outer taps
for (int i=0; i<NUM_OUTER_TAPS; i++)
{

Color[i] = tex2D (linearImageSampler,  outerTaps[i]); 
}

accum += Color[0] * gTexelWeight[4]; // Accumulate outer taps
accum += Color[1] * gTexelWeight[4];
accum += Color[2] * gTexelWeight[5];
accum += Color[3] * gTexelWeight[5];
accum += Color[4] * gTexelWeight[6];
accum += Color[5] * gTexelWeight[6];

return accum;
}
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Tone Mapping

Very Underexposed Underexposed

Good exposure Overexposed



Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Tone Mapping Shader
float4 hlsl_tone_map (float2 tc : TEXCOORD0) : COLOR
{

float fExposureLevel = 32.0f;

float4 original = tex2D (originalImageSampler, tc);
float4 blur     = tex2D (blurImageSampler,  tc);

float4 color = lerp (original, blur, 0.4f);

tc -= 0.5f; // Put coords in -1/2 to 1/2 range

// Square of distance from origin (center of screen)
float vignette = 1 - dot(tc, tc);

// Multiply by vignette to the fourth
color = color * vignette*vignette*vignette*vignette; 

color *= fExposureLevel; // Apply simple exposure level
return pow (color, 0.55f); // Apply gamma and return

}
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Kawase’s Bloom Filter

• Developed by Masaki Kawase of 
Bunkasha Games
• Used in DOUBLE-S.T.E.A.L. (aka

Wreckless)
• From his GDC2003 Presentation: Frame 
Buffer Postprocessing Effects in 
DOUBLE-S.T.E.A.L (Wreckless)
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Kawase’s Bloom Filter

• Start by downsampling (¼ x ¼ = 1/16)  
• Apply small blur filters repeatedly
• More iterations for more blurriness
• Each iteration “Ping-Pongs” between two 

renderable textures used for storing 
intermediate results

1/16

1/16 1/16

1/16

2/16

2/16

2/16 4/16

2/16

Pixel being Rendered
Texture sampling points
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Iterating Kawase’s Bloom Filter

3rd Iteration2nd Iteration

• Each iteration takes the previous results 
as input and applies a new kernel to 
increase blurriness
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Kawase’s Bloom Filter
float3 SiWrecklessBloomFilterRGB
(sampler tSource, float2 texCoord, float2 pixelSize, int iteration)
{

float2 texCoordSample = 0;
float2 halfPixelSize = pixelSize / 2.0f;
float2 dUV = (pixelSize.xy * float(iteration)) + halfPixelSize.xy;
float3 cOut;

// Sample top left pixel
texCoordSample.x = texCoord.x - dUV.x;
texCoordSample.y = texCoord.y + dUV.y;
cOut = tex2D (tSource, texCoordSample);

// Sample top right pixel
texCoordSample.x = texCoord.x + dUV.x;
texCoordSample.y = texCoord.y + dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Sample bottom right pixel
texCoordSample.x = texCoord.x + dUV.x;
texCoordSample.y = texCoord.y - dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Sample bottom left pixel
texCoordSample.x = texCoord.x - dUV.x;
texCoordSample.y = texCoord.y - dUV.y;
cOut += tex2D (tSource, texCoordSample);

// Average
cOut *= 0.25f;

return cOut;
}



Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Iterating Kawase’s Bloom Filter
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• A few iterations are necessary for 
pleasing results
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Kawase’s Light Streak Filter

• Caused by diffraction of incoming light
• Diffraction can happen in the eye’s lens 

or some external surface that scatters 
light such as a car’s windshield.
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Kawase’s Light Streak Filter
s=0      s=1     s=2      s=3

Pixel being Rendered

Texture Sampling Point
sample weight = a^(b*s)
a = attenuation (about ~0.9 – 0.95)
b = 4^(n-1)    (where n = pass)

• Start by downsampling (¼ x ¼ = 1/16)
• Same idea as the bloom: repeatedly apply a small blur 

kernel
• Kernel’s shape is based on direction of streak
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Kawase’s Light Streak Filter

Second Pass
s=0               s=1             s=2              s=3

• Every iteration of the filter expands the 
kernel in the direction of the streak



Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Kawase’s Light Streak Filter

Animating balls are Animating balls are 
light sourceslight sources
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Streak Filter Extension

Circular Pattern Windshield groove pattern due to wiper blades

• The direction of the streak can be specified per-pixel 
using an image-space map like those above

• Rotation vector <x,y,1>
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Streak Filter Extension

Streaks follow windshield Streaks follow windshield 
groove mapgroove map
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Light Streak Shader

float3 SiWrecklessStreakFilterRGB(sampler tSource, float2 texCoord, 
float2 pixelSize, float2 streakDirection, 
int streakSamples, float attenuation, 
int iteration)

{
float2 texCoordSample = 0;
float3 cOut = 0;

float b = pow(streakSamples, iteration);

for (int s = 0; s < streakSamples; s++)
{

// Weight = a^(b*s)
float weight = pow(attenuation, b * s);

// Streak direction is a 2D vector in image space
texCoordSample = texCoord + (streakDirection * b * float2(s, s) * pixelSize);

// Scale and accumulate
cOut += saturate(weight) * tex2D (tSource, texCoordSample);

}

return saturate (cOut);
}
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Depth Of Field
ATI Bacteria Screensaver
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Depth Of Field
• Important part of photo-realistic 
rendering
• Computer graphics uses a pinhole 
camera model
• Real cameras use lenses with finite 
dimensions
• See Potmesil and Chakravarty 1981 
for a good discussion
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Camera Models

pinhole
lens

thin
lens

circle of
confusion

• Pinhole lens lets only a single ray through
• In thin lens model if image plane isn’t in focal plane, 

multiple rays contribute to the image
• Intersection of rays with image plane approximated 

by circle
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Real-time Depth Of Field 
Implementation On Radeon 9700

• Use MRT to output multiple data – color, 
depth and “blurriness” for DOF post-
processing
• Use pixel shaders for post-processing

– Use post-processing to blur the image
– Use variable size filter kernel to approximate 

circle of confusion
– Take measures to prevent sharp foreground 

objects from “leaking” onto background
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Depth Of Field Using MRT

Pixel Pipeline Output
oC0 oC1

R G B A8 888 Depth Blurriness 1616

• Depth and “blurriness” in 16-bit FP format
• Blurriness computed as function of distance 

from focal plane
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Circle Of Confusion Filter Kernel

• Vary kernel size based on the “blurriness” factor

Point in focus Point is blurred



Real-Time 3D Scene Post-processing – Game Developer’s Conference Europe 2003

Elimination Of “Leaking”

•Conventional post-processing 
blur techniques cause “leaking”
of sharp foreground objects onto 
blurry backgrounds
•Depth compare the samples and 
discard ones that can contribute 
to background “leaking”
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Semantic Depth Of Field
• Semantic depth of field – sharpness 
of objects controlled by “relevance”, 
not just depth
• Easy to accommodate with our 
technique

– “Blurriness” is separate from depth
• Can be used in game menus or 
creatively in real-time cinematics to 
focus on relevant scene elements 
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Semantic Depth Of Field
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Depth Of Field Shader
float4 hlsl_depth_of_field_loop (float2 centerTap : TEXCOORD0) : COLOR
{

float2 tap[NUM_DOF_TAPS];
float4 Color[NUM_DOF_TAPS];
float2 Depth[NUM_DOF_TAPS];

// Fetch center samples from depth and focus maps
float4 CenterColor = tex2D (ColorSampler, centerTap);
float2 CenterFocus = tex2D (DoFSampler, centerTap);
float fTotalContribution = 1.0f;
float fContribution;
float fCoCSize = CenterFocus.y * gMaxCoC; // Scale the Circle of Confusion

for (int i=0; i<NUM_DOF_TAPS; i++) // Run through all of the taps
{

// Compute tap locations relative to center tap
tap[i]   = fCoCSize * gTapOffset[i] + centerTap;
Color[i] = tex2D (ColorSampler, tap[i]);
Depth[i] = tex2D (DoFSampler, tap[i]);

// Compute tap's contribution to final color
fContribution = (Depth[i].x > CenterFocus.x) ? CenterFocus.y : Depth[i].y;
CenterColor += fContribution * Color[i];
fTotalContribution += fContribution;

}

float4 FinalColor = CenterColor / fTotalContribution; // Normalize

return FinalColor;
}
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Heat and Haze Effects
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Heat and Haze

• A natural atmospheric effect that 
everyone is familiar with
• Light bends as it passes through media 

of different densities
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Heat Shimmering

• Hot air is less dense than cool air
• Density effects a medium’s index of refraction
• As hot air rises it is replaced by cooler air thus 

changing the way light bends into your line of 
sight
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Heat Shimmering

• Render scene into RGBA off-screen buffer 
(renderable texture)

– Color into RGB
– Distortion weight into Alpha

• Draw full screen quad to backbuffer
– Sample off-screen buffer to obtain distortion weight
– Use perturbation map to determine perturbation 

vector, scale by distortion weight and offset original 
texture coordinates

– Growable Poisson Disc filtering using perturbed 
texture coordinate (grow disc according to distortion 
weight)
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Distortion Weights

• Per-pixel value that determines how 
much that pixel should be distorted
• The probability of refraction increases as 

light passes through more atmosphere
• Distortion increases with scene depth

– Start by clearing render target’s alpha to 1.0 
to indicate maximum depth

– Pixel shader writes per-pixel depth value to 
alpha
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Distortion Weights

• Depth serves as a good global distortion 
metric but your artists will want more local 
control
• Heat geometry may be used to define 

areas of high distortion such as the air 
above a hot gas vent or behind a jet’s 
engine
• Heat textures may be used to animate 

distortion weights across heat geometry
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Heat Geometry & Heat Textures

• Per-pixel weights come from Heat Texture
• Weights are Scaled by depth
• Then further scaled by Height (tex coords) and N.V to avoid hard 

edges
• Distortion weights are written to Alpha
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Full-Screen Quad

Renderable Texture

Full-Screen Quad
Drawn to Back BufferPerturbation Map

• Full-Screen quad is drawn using off-screen 
buffer (renderable texture) and perturbation map 
as textures
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Perturbation Maps

Average

• A 2D Vector stored in Red and Green channels
• Scroll Map in two different directions across full-screen 

quad and sample twice
• Average both samples then scale and bias to get into   

[-1.0, 1.0] range
• Scale vector by distortion weight
• Result is the perturbation vector
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Perturbation Vector

Original <u,v> + Perturbation vector <x,y>

• Perturbation vector is used to offset original texture 
coordinate

• Vector’s magnitude is determined by distortion weight
• This new perturbed texture coordinate is used for 

dependant read into off-screen buffer
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Growable Poisson Disc

Original <u,v> + Perturbation vector <x,y>

• Center blur kernel at perturbed texture 
coordinate
• Grow disc based on distortion weight
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Distortion Shader
float4 main (PsInput i) : COLOR
{

// fetch from perturbation map with scrolling texture coords
float3 vPerturb0 = tex2D (tPerturbationMap, i.texCoord1);
float3 vPerturb1 = tex2D (tPerturbationMap, i.texCoord2);

// scale and bias: (color - 0.5f)*2.0f
vPerturb0 = SiConvertColorToVector(vPerturb0);
vPerturb1 = SiConvertColorToVector(vPerturb1);

// average perturbation vectors
float2 offset = (vPerturb0.xy + vPerturb1.xy) * 0.5f;

// get distortion weight from renderable texture (stored in alpha)
float4 cDistWeight = tex2D (tRBFullRes, i.texCoord0);

// square distortion weight
cDistWeight.a *= cDistWeight.a;

// compute distorted texture coords
offset.xy = ((offset.xy * cDistWeight.a) * fPerturbScale) + i.texCoord0;

// fetch the distorted color
float4 o;
o.rgb = SiPoissonDisc13RGB(tRBFullRes, offset, 1.0f/screenRes.xy, cDistWeight.a);
o.a = 1.0f;
return o;

}
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Growable Poisson Disc Shader
float3 SiGrowablePoissonDisc13FilterRGB 
(sampler tSource, float2 texCoord, float2 pixelSize, float discRadius)
{

float3 cOut;
float2 poisson[12] = {float2(-0.326212f, -0.40581f),

float2(-0.840144f, -0.07358f),
float2(-0.695914f, 0.457137f),
float2(-0.203345f, 0.620716f),
float2(0.96234f, -0.194983f),
float2(0.473434f, -0.480026f),
float2(0.519456f, 0.767022f),
float2(0.185461f, -0.893124f),
float2(0.507431f, 0.064425f),
float2(0.89642f, 0.412458f),
float2(-0.32194f, -0.932615f),
float2(-0.791559f, -0.59771f)};

// Center tap
cOut = tex2D (tSource, texCoord);
for (int tap = 0; tap < 12; tap++)
{

float2 coord = texCoord.xy + (pixelSize * poisson[tap] * discRadius);

// Sample pixel
cOut += tex2D (tSource, coord);

}
return (cOut / 13.0f);

}
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Summary

• Image Space Post Processing
– High Dynamic Range Rendering
– Blooms, Tone Mapping and Vignettes
– Depth Of Field
– Heat and Haze
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For More information

• ATI Developer Relations
– http://www.ati.com/developer

• High Dynamic Range Rendering
– http://www.debevec.org

• Masaki Kawase’s GDC03 Presentation
– http://bunkasha-games.com
– http://www.daionet.gr.jp/~masa
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