
GPU Crowd Simulation

Jeremy Shopf
AMD, Inc.

Christopher Oat
AMD, Inc.

Joshua Barczak
AMD, Inc.

Figure 1: Agents traverse a terrain while avoiding obstacles and each other. Color indicates agents’ goal group.

1 Abstract
We present a GPU-friendly path-planning framework for large-
scale crowd simulation (Figure 1). This framework has been used
to simulate 65,000 agents at real-time framerates on a single com-
modity GPU. By combining a continuum-based global path planner
with a fine-grained avoidance model, we can perform expensive
global planning at a coarse resolution and lower update rate while
the local avoidance model takes care of avoiding other agents and
nearby obstacles at a higher frequency. To our knowledge, this is
the first massive crowd simulation performed entirely on a GPU.

2 Global Path Planning
We chose a continuum-based approach similar to the Continuum
Crowds work by Treuille et al. [2006]. This type of method is
particularly well suited for simulating large numbers of agents be-
cause it is computed spatially, instead of per-agent, and results in
smooth movement with no “dead-ends.” The environment is repre-
sented with a cost function. This cost function is then used as in-
put to a GPU-based eikonal solver [Jeong and Whittaker 2007] that
calculates the travel-time (potential) from any location to the near-
est goal. By following the gradient of this potential field, agents
are guaranteed to always be moving along the shortest path to the
global goal, considering the speed at which an agent can travel
based on terrain features, obstacles and agent density.

3 Local Avoidance
Unfortunately, solving the eikonal equation at a resolution high
enough for large numbers of agents to avoid each other with ac-
ceptable fidelity is prohibitively expensive for a real-time applica-
tion. We augment our global eikonal solution with a local avoidance
model that allows agents to avoid each other and small-scale obsta-
cles. This avoidance model computes agent velocities by examining
the direction determined by the global model and the positions and
velocities of nearby agents. This avoidance model is based on the
Velocity Obstacle formulation [Fiorini and Shiller 1998].

3.1 Spatial Queries

Determining the positions and velocities of dynamic local obstacles
requires a spatial data structure containing all obstacle information
in the simulation. We developed a novel multi-pass algorithm for
sorting agents into spatial bins. Agents are rasterized as point prim-
itives into a bin based on their locations. Agent IDs are stored in a
depth texture array and bin loads are stored in a color buffer. The
GPU’s depth-test unit ensures that agent IDs are inserted into bins
in sorted order and the alpha blend unit is used to increment bin
load counters as agents are binned. Agents are binned in parallel
but only a single agent is placed into a particular bin per iteration.

As agents are placed into bins, they are removed from the working-
set using Direct3D10 stream-out. This prevents agents from being
re-processed during subsequent iterations. We repeat this process
once for each bin slot, using predicated rendering to terminate early
once all elements have been binned. The spatial data structure is
queried by first reading the bin load (n) from the color buffer and
then loading n agent IDs from the depth texture array.

3.2 Direction Determination

Each agent evaluates a number of fixed directions relative to the
goal direction determined by the global solution. We used five di-
rections in our application but more can be used for increased mo-
tion fidelity. Each direction is evaluated to determine the time to
collision with agents in the current or adjacent bins. Each direction
is given a fitness function based on the angle relative to the desired
global direction and the time to collision. Time to collision is deter-
mined by evaluating a swept circle-circle collision test, in which the
radius of each circle is equal to the radius of the bounding circle of
the associated agent. The updated velocity (Equation 3) is then cal-
culated based on the direction with the largest fitness function result
(Equation 2) and the smallest time to collision in that direction.

fitness(vpi) = wit(vpi) + (vi · vpi) · .5 + .5 (1)

vi = arg max
vpi∈V

fitness(vpi) (2)

vfinal = v̂i ∗min(sa, sat(v̂i)/5 ft) (3)

where wi is a per-agent factor affecting the preference to move in
the global direction or avoid nearby agents, t(x) returns the mini-
mum time-to-collision with all agents in direction x, V is the set of
discrete directions to evaluate, vi is the global direction, sa is the
speed of agent a, and 5ft is time-delta since the last simulation
frame.

References
FIORINI, P., AND SHILLER, Z., 1998. Motion planning in dynamic

environments using velocity obstacles.
JEONG, W.-K., AND WHITTAKER, R. 2007. A fast eikonal equa-

tion solver for parallel systems. SIAM Conference on Computa-
tional Science and Engineering.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. ACM Trans. Graph. 25, 3, 1160–1168.


