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The goal of the Froblins demo was to provide a path planning system for a large 
number of characters that was plausible and would be free of strange behaviors and 
glitches. Our solution was to use a hybrid system consisting of a global solver that 
would provide the shortest path to the goal on a coarse scale and a local system that 
would allow each agent to follow this path while navigating around other nearby 
agents and small-scale obstacles. We wanted everything to be dynamic, so in the 
demo we allow the user to place and move goals and obstacles such as poisonous 
gas.
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For our global planner we chose a continuum approach similar to the Continuum 
Crowds paper at SIGGRAPH 2006.  A continuum path planner has some inherent 
benefits such as smooth, flow-like crowd movement, easy incorporation of 
congestion avoidance, and exhibits some emergent phenomena such as lane 
formation. These type of behaviors add much realism so this type of approach was 
very attractive to us. The implementation in the 2006 paper allowed for large 
numbers of agents but we wanted something bigger and faster. Before I get to our 
implementation, let’s discuss the details of a continuum approach.
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The continuum method models the environment as a positive cost function that 
describes the cost or time of moving from one location to another nearby location. A 
region with a high cost should be prohibitive to an agent. In our application, we have 
three components to our cost function. The first, the static cost, contains the cost 
associated with the static terrain. Sharp slopes and mountain tops have a high cost 
while flat valleys have a very low cost. This component of the cost function also 
includes large structures such as tents and pagodas. The second component contains 
the cost of agent congestion. Each agent “splats” a radial function into the cost 
function additively. So if a large number of agents are in a certain area, the cost 
function is high in the location and other agents will be more apt to avoid that area. 
The last component is the Hazard component. This contains dynamic obstacles and 
hazards that the agents should avoid. This includes noxious gas clouds and the “Ghost 
Froblin” controlled by the user. All of these components are weighted accordingly and 
summed into a total cost function.
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Ok, well how is this cost function used to generate shortest paths to the goal? First a 
potential function is generated for the environment based on the cost function. The 
potential at a given location x is equal to the cost function integrated along the 
shortest path from x to the goal. So this function is the total cost or travel-time for an 
agent to get to the closest goal. How is this potential function generated? First, the 
potential is set to zero at the location containing the goal itself. This makes sense. If 
you are already at the goal, it doesn’t cost anything to get there. Every where else, 
the potential is calculated to satisfy the eikonal equation, picture above. It is 
calculated such that the magnitude of the gradient of the potential function is equal 
to the cost function evaluated in the direction of the gradient (F).
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We’re talking more about the implementation of an eikonal equation solver in a 
second. First, how does one get the shortest path from the potential function? If you 
think of the potential function as the “travel-time” to the closest goal, the gradient of 
that function points in the direction in which the travel-time is increasing the most. 
So if you follow the negative of this gradient, you will always be moving as close to 
the goal as possible, which is logically the shortest path to the goal. 
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The Continuum Crowds work used a technique known as the Fast Marching Method. 

-This algorithm is very similar to Dijkstra’s method.. The difference is in Step 2 where 
the potential is calculated. The problem of finding a solution to the Eikonal equation 
is a continuous one and Dijkstra’s solves in the discrete domain and will always result 
in stairstep patterns. The Fast Marching Method computes the potential using a 
Upwind Finite Difference Approximation: solving a quadratic to compute the current 
potential based on the lowest potential neighbors along each axis. 
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While the FMM was used in the Continuum Crowds work, the frame rates achieved 
were not suitable for interactive applications such as games. We sought to accelerate 
the eikonal solving step. The problem is the FMM is that it is not very parallelizable.
This is due to the ordered data structure needed to track the cell with minimum 
potential and only that cell’s potential can be determined each frame. The Fast 
Iterative Method is a recent work by Won-Ki Jeong and Ross Whitaker at Utah for 
solving the eikonal equation in parallel. This method maintains no ordered data 
structure. It works by updating the potential of many cells in parallel using the 
Upwind Finite Difference approximation also used in the FMM. Cells are removed 
from the active list in coherent blocks based on a convergence measure. Blocks of 
grid cells may be ‘reactivated’ if nearby blocks update cells that border them. 
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We augment our coarse global navigation system with a fine-grained, higher 
frequency local navigation system. The basic idea here is that in the local system, 
agents “sense” their surroundings and update their velocities accordingly to prevent 
imminent collisions with other agents and obstacles.  Before we can talk about how 
agents update their velocities, agents have to have a way to query what other agents 
and obstacles are nearby.
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We implement a GPU binning algorithm that sorts agents into spatial bins that

can be queried by each agent. The output of this algorithm is a 2D color buffer 

containing the load/count of elements in each bin and a second texture array 

containing the IDs of the agents in that bin. 

Our algorithm uses a 2D depth texture array and a single 2D color buffer to 

construct a data structure for storing agent information spatially. The depth 

texture array serves as our Agent ID Array. A given 2D texel address in this 

array serves as a bin.  A single bin is a 1D array consisting of the same texel in 

each array slice. Each slice of the texture array contains a single agent ID (bin 

element). The agent IDs are stored in bins in ascending sorted order by agent 

ID. The number of agents that fall into a given bin may be less than the bin 

capacity (which is defined by the number of depth array slices).  In order to 

efficiently query the agent IDs in a given bin we use store a bin count inside a 

color buffer.

14



The binning data structure is populated by rasterizing a point primitive for each agent 
to the pixel that maps to the world-space position of the agent. The bin counter (a 
color buffer) is bound as the render target and the ID Array is bound as the depth 
buffer. The color of each primitive is a constant scalar and the depth of the primitive 
is set to nAgentID/nTotalNumAgents. The depth-test unit is used to reject all but the 
smallest ID and the color output is additively blended, effectively maintaining a count 
of how many agents ended up in each bin. There are many implementation details 
and performance optimizations that are left out here, but will be detail in the talk by 
Chris Oat in the “Parallel Computing for Graphics” course on Friday.
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To find all agents near a particular world space position, the position is 

translated into a 2D bin address.  Any translation function may be used, our 

world domain is square so a simple uniform grid was used to map world space 

positions to bins.  Once the bin address is known, the the bin load is read from 

the Bin Counter.  This gives us the number of agents that are in the bin we are 

interested in.  Finally, the each agent’s ID in the bin is read from the Agent ID 

array.
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g_i being the global direction determined by the global path planner.

We used five fixed directions in our implementation but one could easily use more for 
increased motion fidelity. This set of directions are rotated to align with the global 
direction, g_i. This way local avoidance is always relative to the direction the agent 
desires to move globally.

Using directions “to the right” of the global navigation direction allows us to ignore 
the resolution of which agent will turn each way. 
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Fitness function is : F(v) = w_i * t(v) + ( g_i * v )*.5 + .5
Where w_i is a per-agent weight that affects preference to move in the global 
direction or avoid nearby agents. This can be used to tweak aggressiveness of 
individual agents.
t() is the function that determines time to collision 
g_i is the global navigation direction
v is the direction to be evaluated 

So the first term factors in obstacles and the second term factors in the angle relative 
to the global direction
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