Advances in Real-Time
Rendering in 3D Graphics and
Games

SIGGRAPH 2008 Course
Part 1 and 1l

August 11, 2008

Course Organizer and Notes Editor: Natalya Tatarchuk, AMD

Lecturers:

Michael Boulton, Rare
Hao Chen, Bungie
Dominic Filion, Blizzard Entertainment
Xinguo Liu, Microsoft Research Asia / Zhejiang University
Martin Mittring, Crytek GmbH
Rob McNaughton, Blizzard Entertainment
Christopher Oat, AMD
Natalya Tatarchuk, AMD

Advances in Real-Time Rendering in 3D Graphics and Games — SIGGRAPH 2008

About This Course

Advances in real-time graphics research and the increasing power of mainstream GPUs have
resulted in an explosion of innovative algorithms suitable for rendering complex virtual worlds
at interactive rates. Every year the latest video games display a vast variety of sophisticated
algorithms resulting in ground-breaking 3D graphics that push the visual boundaries of
interactive experience.

This course will cover a number of topics ranging from the best practices and techniques
prevalent in current state-of-the-art rendering in many award-winning games all the way up to
innovative 3D rendering research that will be found in the games of tomorrow. This will include
examples from recently games from Crytek, Rare, Bungie as well as upcoming titles from
Blizzard Entertainment, and graphics research from AMD’s Game Computing Applications
Group.

Prerequisites

This course assumes working knowledge of a modern real-time graphics APl like OpenGL or
Direct3D, as well as a solid basis in commonly used graphics algorithms. The participants are
also assumed to be familiar with the concepts of programmable shading and shading languages.

Intended audience: Technical practitioners and developers of graphics engines for visualization,
games or effects rendering interested in interactive rendering. Presented techniques are
applicable to the real-time and offline domains. The attendees will come away with a number of
highly optimized algorithms in various areas of real-time rendering.

Topics

e Lighting and Material of Halo 3

e Advanced Virtual Texture Topics

e March of the Froblins: Rendering massive crowds of intelligent and detailed creatures on
GPU

e Using Wavelets with Current and Future Hardware

e Rendering Techniques from StarCraft II

il

Suggested Reading

. Real-Time Rendering by Tomas Akenine-Médller, Eric Haines, and Naty Hoffman, A.K. Peters, Ltd.; 3" edition,
2008

° Advanced Global lllumination by Philip Dutre, Phillip Bekaert, Kavita Bala, A.K. Peters, Ltd.; 1% edition, 2003

. Radiosity and Global lllumination by Frangois X. Sillion, Claude Puech; Morgan Kaufmann, 1994.

e Physically Based Rendering : From Theory to Implementation by Matt Pharr, Greg Humphreys; Morgan
Kaufmann; Book and CD-ROM edition (August 4, 2004)

e The RenderMan Companion: A Programmer's Guide to Realistic Computer Graphics, Steve Upstill, Addison
Wesley, 1990.

e Advanced RenderMan: Creating CGI for Motion Pictures, Tony Apodaca & Larry Gritz, Morgan-Kaufman
1999.

e Texturing and Modeling, A Procedural Approach Second Edition, Ebert, Musgrave, Peachey, Perlin, Worley,
Academic Press Professional, 1998.

e Shaderx®: Advanced Rendering, by Wolfgang Engel (Editor), Charles River Media, 1** edition, (February

2008)

e ShaderX’: Advanced Rendering Techniques, by Wolfgang Engel (Editor), Charles River Media, 1** edition
(December 2006)

e ShaderX*: Advanced Rendering Techniques, by Wolfgang Engel (Editor), Charles River Media, 1™ edition
(November 2005)

e ShaderX’: Advanced Rendering with DirectX and OpenGL, by Wolfgang Engel (Editor), Charles River Media,
1% edition (November 2004)

e ShaderX’: Introductions and Tutorials with DirectX 9.0, by Wolfgang Engel (Editor), Wordware Publishing,
Inc.; Book and CD-ROM edition (November 2003), now free online:
http://www.gamedev.net/reference/programming/features/shaderx2/Introductions and Tutorials with D
irectX 9.pdf

e ShaderX’: Shader Programming Tips and Tricks with DirectX 9.0, by Wolfgang Engel (Editor), Wordware
Publishing, Inc.; Book and CD-ROM edition (November 2003), now free online:
http://www.gamedev.net/reference/programming/features/shaderx2/Tips and Tricks with DirectX 9.pdf

Advances in Real-Time Rendering in 3D Graphics and Games — SIGGRAPH 2008

Lecturers

Natalya Tatarchuk, Graphics SW Architect, AMD

Natalya is a graphics software architect and a project lead in the Game Computing Application
Group at AMD Graphics Products Group (Office of the CTO). There she pushes parallel
computing boundaries investigating innovative real-time graphics techniques. In the past she
has been the lead of ATI’s demo team creating the state-of-the-art interactive renderings and
has been the lead for the tools group at ATl Research. Prior to that Natalya worked on 3D
modeling software, and scientific and financial visualization, among other projects. She has
published papers and articles in various computer graphics conferences and technical book
series, and has presented her work at graphics and game developer conferences worldwide.

Christopher Oat, MTS, AMD

Christopher Oat is a member of AMD's Game Computing Applications Group (Office of the CTO)
where he is a technical project lead working on state-of-the art demos. In this role, he focuses
on the development of cutting-edge rendering techniques for the latest graphics platforms.
Christopher has published his work in various books and journals and has presented his work at
graphics and game developer conferences around the world.

Dominic Filion, Senior Software Engineer, Blizzard Entertainment

Dominic is currently a senior software engineer at Blizzard Entertainment, where he has been
hard at work on the upcoming Starcraft Il for the past few years. He has worked for close to a
decade in the games industry, acting as technical director or principal architect on three
different commercial 3D engines at several game companies prior. On the rare moments where
he is not obsessing about improving Starcraft Il's graphics, Dominic would enjoy feedback on the
material presented here, so feel free to drop him a note!

Rob McNaughton, 3D Animator and Digital Effects artist, Blizzard Entertainment

Rob McNaughton is a Southern California native bent on playing games for a living. That works
out since he has been employed at Blizzard Entertainment for over 12 years. Rob currently is
Lead Technical Artist for Blizzard’s Team 1, and has worked on the following games for them:
StarCraft || (When it is ready), World of Warcraft: The Burning Crusade (2007) World of Warcraft
(2004), WarCraft lll: The Frozen Throne (2003), Warcraft Ill: Reign of Chaos (2002), StarCraft
(1998), StarCraft: Brood War (1998), Diablo (1996).

Rob is primarily a 3D Animator and Digital Effects artist but has done his time at many art tasks
including pencil sketching and digital painting. Digital speed painting has become a favorite new
work medium brought on with help of conceptart.org.

v

Hao Chen, Graphics Architect, Bungie Studio

Hao Chen is the graphics architect and one of the engineering lead for Bungie Studio, where he
currently leads the research and development of Bungie’s next generation graphics engine. He
was the graphics engineering lead of Halo3. Prior to that, Hao has worked on numerous game
titles for Microsoft and Bungie on the Xbox and PC platforms, including Outwars, AMPED]1,
AMPED2, and Halo2.

Xinguo Liu, Professor, Zhejiang University

Xinguo Liu is a professor of the Computer Science School at Zhejiang University. His research
interests include geometry processing, appearance modeling, real-time rendering, and
deformable objects. He received a B.Sc. in 1995 and a Ph.D. in 2001 from Zhejiang University. He
was a researcher at the Internet Graphics Group of Microsoft Research Asia from 2001 to 2006,
and he was a visiting researcher at CMU Graphics Lab in 2007.

Michael Boulton, Senior Software EngineerRare/MGS

Michael has worked at Rare/MGS for over five years, and is currently a senior software
engineer. He wrote the graphics engine for VIVA PINATA on the Xbox360, and has given previous
presentations at both GDC and ACM SIGGRAPH. Currently, he works in the shared technology
department at Rare, developing technology for current and future hardware.

Martin Mittring, Lead Graphics Programmer, Crytek GmbH

Martin is a software engineer and member of the R&D staff at Crytek. Martin started his first
experiments early with text-based computers, which led to a passion for computer and graphics
in particular. He studied computer science and worked in one other German games company
before he joined Crytek. During the development of Far Cry he was working on improving the
Polybump™ tools and was became lead network programmer for that game. His passion for
graphics brought him back to former path and so he became lead graphics programmer in R&D.
Currently he is busy working on the next iteration of the engine to keep pushing future PC and
next-gen console technology.

Advances in Real-Time Rendering in 3D Graphics and Games — SIGGRAPH 2008

Contents

1 Chen, Liu
Lighting and Material of Halo3

2 Mittring
Advanced Virtual Texture Topics

3 Shopf, Barczak, Oat, Tatarchuk
March of the Froblins: Simulation and Rendering massive crowds of
intelligent and detailed creatures on GPU

4 Boulton
Using wavelets with current and future hardware

5 Filion, McNaughton
Rendering techniques from StarCraft Il

vi

23

52

102

133

Preface

Welcome to the Advances in Real-Time Rendering in 3D Graphics and Games course at
SIGGRAPH 2008. We're excited to bring you the third installment of our successful course, with
lectures from top game developers as well as industry researchers. We have included both 3D
Graphics and Games in our course title in order to emphasize the incredible relationship that
has rapidly grown between the graphics research and the game development communities in
the recent years. Long gone are the days when interactive rendering was synonymous with
gross approximations and careless assumptions, or simplistic visual rendering. With the amazing
evolution of the processing power of consumer-grade GPUs, the gap between offline and real-
time rendering is rapidly shrinking. Now the question becomes less of “how can | simplify what
I’'m doing?”, but, with over a teraflop of compute on a single GPU, we can now ask the question
of “What amazing effect do | want to do now?” Truly, the frontiers of interactive rendering
research have expanded and the real-time domain is now at the forefront of state-of-the-art
graphics research.

As researchers, we focus on pushing the boundaries with innovative computer graphics theories
and algorithms. As game developers, we bend the existing software APIs such as DirectX and
OpenGL and the available hardware to perform our whims at interactive rates. And as graphics
enthusiasts we all strive to produce stunning images that come alive on our screens. It is this
synergy between researchers and game developers that is driving the frontiers of interactive
rendering to create truly rich, immersive environments. There is no greater satisfaction for
developers than to share the lessons learned and to see our technologies used in ways we never
imagined.

This is the third time this course is presented at SIGGRAPH and we hope that you enjoy the new
material presented this year and come away with a new understanding of what is possible
(without sacrificing interactivity!). We hope that we will inspire you to help drive real-time
rendering research and games!

Natalya Tatarchuk, AMD
August, 2008

vii

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Chapter 1

Lighting and Material of Halo 3

Hao Chen'
Xinguo Liu?

— VI 10
N

Fi;gul;e 1. A still frame om Halo 3 shwing the main character rendered with complex
materials under global illumination.

! haochen@bungie.com
2 xgliu@cad.zju.edu.cn

1|Page

Chapter 1: Lighting and Material of Halo 3

1.1 Introduction

Lighting and material are very important aspects of the visual appearances of games and
they present some of the hardest challenges in real time graphics today. For Halo and
indeed many other games, keeping the players immersed in the virtual environment for
long periods of time is a top priority of the graphics system, and good quality lighting
and realistic materials are the fundamental building blocks for achieving the level of
realism necessary to accomplish this goal.

global illumination.

Except in special cases such as in a highly stylized environment, a good lighting scheme
must be able to capture some form of global illumination, as can be seen here in Figure
2. Rendering global illumination involves solving the rendering equation first proposed
in [IGC86][KA)YA86]. If we assume that a surface is not self-emissive, then the rendering
equation can be written as:

107 =[S (V. L)cos(@)(@)de>. (1)

The equation states that the total reflected light energy 7 from a surface point along a
viewing direction V' is the product of the BRDF f', the incoming light 7, and the cosine
of the angle & between the view and the light direction (V and L, respectively),
integrated over the hemisphere defined by the surface normal (See Table 1 for a list of
symbols and their definitions used throughout the chapter).

2|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Solving the equation directly is generally not feasible for a real time game, except for
special cases such as when the lighting environment is made of only a small number of
point light sources and when we only consider direct illumination.

Figure 3. An outdoor scene made of different materials.

Rendering complex materials under global illumination presents further challenges. A
typical scene in Halo 3 is made of many different materials, from dull concrete to shiny
metal, as seen in Figure 3. Although simple BRDF models such as Phong have been used
extensively in real time games, they are only trivial to evaluate interactively if the light
source are point lights. For area light sources like the sky light in Figure 3, rendering the
BRDF involves evaluating an expensive integral, as in Equation 1. The Phong model also
does not capture important physical properties such as the Fresnel effect, which can
contribute significantly to the realism of many materials.

For Halo 3, our goal is to be able to handle arbitrary light sources and to capture
important global illumination effects, such as the soft lighting bounced from the floor
towards the tree trunk as seen in Figure 2. We also want to render a large variety of
materials under global and environment lighting, using a more physically accurate BRDF
model.

In this chapter we describe the core lighting and material models used in Halo 3. We
first describe the Cook Torrance BRDF model. Then we show how Equation 1 can be
factored into separate components, which can each be rendered in real time using
different techniques, and how the parts are combined together in the end for final
shading. The shader code and further details are listed in the Appendix.

3|Page

Chapter 1: Lighting and Material of Halo 3

unit vector in the viewer direction
unit vector in the lighting direction
halfway vector: unit vector in V' + L
material roughness parameter

diffuse reflectance coefficient

specular reflectance coefficient

diffuse reflectance

roughness function

Fresnel value at normal incidence angle
Fresnel term

geometrical attenuation factor in Cook-Torrance model

SQm SIS ST I~ S

micro-facet distribution function in Cook-Torrance model

Table 1. Symbols used in this work

1.2 The Cook Torrance BRDF

The Cook-Torrance BRDF, first introduced in [COOKTORRANCE81], is based on the micro-
facet theory, and is found to be more accurate than Blinn-Phong [BLINN77] model
commonly used in games [NDMO5]. We pick this model because it offers a good trade-
off between BRDF expressiveness and computational complexity. Our methods can be
extended to other models (See Appendix for an implementation of the Phong model).
The Cook Torrance reflectance model is as follows:

SW,L)= ded + kyFRn 7.1, (2

where the first term is the diffuse component, which is dependent on the incoming light
only, and the second term is the specular component, which is dependent on both the
light and the viewing directions. Plugging the BRDF into the rendering equation in (1),
we have:

1(V) = kR, [[lcos(0)((@)dw+k,[[|FR, (V, L) cos(0) (w)d 3)

Both the diffuse and specular components in Equation 3 involve an integral that is
expensive to compute directly in real time. However, if the light sources are point lights
only, the integral becomes a sum of (N - L) terms for diffuse illumination. The specular
reflectance can be evaluated in a similar fashion by evaluating the specular lobe directly
for each point light and then summing. Games have used these simple forms of lighting
and material models extensively, some to great effect. However, the restriction of point
light sources (and direct illumination only) is one of the main reasons that many games

4|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

look unrealistic. To handle arbitrary light sources we need to find a way to evaluate the
integrals in equation 3 efficiently, and for that we turn to spherical harmonics.

1.3 Spherical Harmonics Light Maps and Diffuse Reflectance

Spherical harmonics (SH) basis over the sphere is analogous to the Fourier basis over the
line or the circle. It can be shown that for Lambertian surfaces, a small number of
spherical harmonics terms are sufficient to approximate the original lighting to high
accuracy [BRASRIJACOBS03]. The Spherical Harmonics Irradiance Environment Maps,
introduced in [RAMAMOORTHIHANRAHANO1], encode the irradiance distribution function as
a vector of SH coefficients. The un-shadowed diffuse transfer can then be computed in a
shader using a quadratic polynomial approximation. For shadowed transfer and inter-
reflections, the Pre-computed Radiance Transfer (PRT) method [SKS02] pre-computes
the transfer function as a SH vector, which is then combined with incoming lighting
using a SH dot product. Glossy materials are also possible in the SH representation
[KSS02][RAMAMOORTHIHANRAHANO2][SHHS03], although none of the previous methods
can meet the stringent performance and storage requirements of a real time game. We
chose spherical harmonics basis for our lighting and material methods as well for the
following reasons: SH is suitable for approximating smooth changing signals using a
small number of coefficients which makes it ideal for lighting, transfer and material
purposes; SH can be rotated easily in a shader; Finally, there are a number of algorithms
such as PRT that are compatible with the SH representation which we use in our game.

The incoming lighting incident upon a point can be projected into spherical harmonics as
follows:

A = mf(w)x(w)da) 4)

where Y, are the spherical harmonics: Y., ¥, ¥, ¥, Y, ,, ¥, |, V., .Y, V).
Using SH basis, the diffuse reflectance in Equation 3 is simply:

1,(V) = kR, [[Jcos(O) (@) dw =k, R, Y 44, (5)

i=0,2,6
Here R, is the Lambertian BRDF which is a constant, and 4, is the projection of the

cosine lobe in SH. Since the cosine lobe is radially symmetric around the normal, the
coefficients of its SH projection are non-zero only for the i= 0, 2, 6, ... basis. The first
three terms are given as (from [RAMAMOORTHIHANRAHANO1B]):

Ay =7ld, A =~r/3, 4, =57/64

Notice equation 5 assumes that the incoming light is rotated into the local coordinate
frame of the surface point.

5|Page

Chapter 1: Lighting and Material of Halo 3

Equation 4 encodes the incident radiance at a single point. This is insufficient for our
purpose of lighting the whole scene since the incident radiance is spatially varying from
point to point. A commonly used strategy to approximate such spatially varying
functions is to sample the function at discrete sampling points, and then interpolate
between the samples everywhere. There are several possible strategies we can use.

One such strategy is to spatially divide the scene into cells using a regular 3D grid, then
store one or more samples per cell. This is the original scheme used in [GSHG98].

Figure 4. Harmonics lightmap textures using quadratic SH.

In the ATl Ruby: Dangerous Curves demo [OATO5], an adaptive subdivision method is
proposed to reduce the number of samples needed while preserving important details.
The ATl demo also uses spherical harmonics
gradients to improve the interpolation between
samples. The spatial subdivision scheme is well
suited for rendering small dynamic objects, since
the whole object can be rendered from one or a
few lighting samples, obtained by interpolating
between the samples closest to the object’s
location. For large static environment geometry
however, the spatial subdivision scheme has
several hard-to-overcome problems as shown
here in Figure 5. First, rendering bump maps
from such a scheme would require associating
each pixel with one or more samples closest to
Figure 5. Hard shadow edges and bump the pixel location, and this is non-trivial and
mapping are hard problems for schemes expensive to do in real time. Furthermore, dense
based on discrete irradiance volumes. samples must be stored along a shadow
boundary, in order to preserve the appearance of sharp shadows, and this would
require very final levels of subdivisions.

In Halo 3, we represent the lighting as spherical harmonics light maps, as shown in
Figure 4. They can be viewed as analogous to traditional light maps, but instead of

6|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

storing the exit radiance as a single color, each pixel stores the incident radiance at the
surface point, encoded in SH as in Equation 4. A similar representation is used in
[GooDpTAYLORO5S] as an optimization for photon mapping.

SH light maps are textures parameterized over the surface which can be mapped to the
geometry in real time. These textures can be generated using any offline global
illumination solver. We use a distributed photon mapping algorithm running on a multi-
node rendering farm. See [CHENO8][VILLEGASSEANQS] for further details.

Rendering from SH light maps is straightforward. A key benefit of the SH light maps is
that bump maps can now be rendered directly. We now show a couple of examples of
the diffuse reflectance of an environment rendered directly from the SH light map
representation.

“ﬁ § i G i,
Figure 6. An Outdoor scene from Halo 3. The sun and sky models are from [PSS99], they
are the only light source in the scene. Global illumination is the key factor to the realism
of this scene, so is rendering everything from a consistent lighting representation.

7|Page

Chapter 1: Lighting and Material of Halo 3

Figure 7. Close-up view of a bump mapped surface. Notice the subtle shading of the
bumped detail from reflected lighting below and the large, bluish sky light. This is very
difficult to achieve with point lights, unless a large number of them are used.

1.4 Specular Reflectance

Rendering glossy material under global and environment lighting is hard for real time
games. There are several reasons for this. First, the specular reflectance is a view
dependent quantity which makes the specular part in Equation 3 much more difficult to
evaluate than the diffuse part. Second, a glossy material typically has both high and low
frequency parts and everything in-between, but low order spherical harmonics is
effectively a low pass filtered signal of the original, and thus ill suited for capturing high
frequency glossy appearance.

Our method is to breakdown the all-frequency specular reflectance further into three
separate layers, responsible for high, mid and low frequency reflectance respectively.
These separate layers are then computed using a different technique that is appropriate
for the type of appearance they are responsible for. Figure 8 shows renderings of the
Master Chief in each layer separately and then with all layers combined. The details of
the layers are described as follows below.

1.4.1 Analytical Specular

This layer is rendered by evaluating the BRDF model directly in shader from the
directional light coming from the dominant light direction (See Appendix A for a HLSL

8|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

listing). This layer is responsible for capturing the sharp specular highlights as seen in
Figure 8 (a). The specular lobe of the Cook Torrance model is the following:

DG

SODT D

(6)

where D is the micro-facet distribution function, and G is the geometry attenuation
factor, and L is the light direction. Interested readers could find how the micro-facet
distribution function and the geometry attenuation factor are defined in
[CookTORRANCE81]. For this layer, we only consider the light from the dominant light
direction, which can be approximated by fitting a directional light to the quadratic SH
light vector. For the direction vector, we use the optimal linear direction (the SH linear
coefficients normalized). This direction is well behaved and smoothly varying.
Alternatively, we can store a separate texture that encodes the dominant light direction.
However, care must be taken to ensure that the directions are filterable since these
textures are subject to various filtering operations in the texturing hardware. We can
find the dominant light intensity by minimizing the squared error £ between the SH
light and the SH version of the “directional” light as follows:

E=Y (4-cY(d).

i=0,...8

Let the derivative with respect to d be zero, E' = 0, then the intensity of the directional
light is given by

c= YY@) Y Y@y

i=0,..8 i=0,..8

We can pre-compute and store the intensity ¢ as a separate HDR texture.
1.4.2 Environment Map

For the middle frequency glossy reflectance, we use environment cube-maps that are
pre-generated at discrete locations throughout the scene. A rendering of the Master
Chief with environment maps only can be seen in Figure 8 (b). Since the analytical
specular already handles the sharpest highlights, we render the environment maps with
the high frequency filtered out. This also allows us to use smaller cube-map sizes (128 x
128 x 6). Unlike analytical specular, the environment map can capture reflectance from
the whole lighting environment.

9|Page

Chapter 1: Lighting and Material of Halo 3

Figure 8. Rendering of the Master Chief showing separate sl;ecular layers. Clockwise
from top left: (a) Analytical specular only. (b) Environment map only. (c) Area specular

only. (d) All combined + diffuse.

10| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Since we are storing the cube-maps at discrete locations instead of per-pixel on the
surface, the environment map sampling suffers from the same limitation mentioned
earlier, i.e. the inability to handle sharp transitions along the shadow boundaries. To
overcome this, we pre-divide the environment maps by the area specular (described
below), and in the shader, we multiply back in the area specular. This simple scheme
allows us to darken or brighten the environment maps in and out of shadows.

1.4.3 Area Specular

We call the low frequency layer of the glossy reflectance the area specular term. This
can be seen in Figure 8 (c). We developed a novel method to parameterize the Cook
Torrance BRDF model in SH, which can then be rendered directly from the SH light map
representation or any arbitrary lighting that can be represented in the SH basis.

Our method differs from others in that we parameterize the whole BRDF model instead
of each material. Therefore we can freely change any parameters of the BRDF model in
real time and generate different materials. Spatially varying BRDF can be achieved by
storing these parameters in a texture. Our model requires only 3K of storage and can be
computed efficiently in real time. Our method can be extended to other BRDF models,
and the Phong BRDF is shown in the Appendix as an example.

1.4.3.1 Light Integration

Recall equation 3, the specular component of the Cook Torrance BRDF is:
L(V)= K[[IFR,(V,L)cos(0)((w)d
If we project both the BRDF and the cosine term in SH, then by the convolution theorem

the integral becomes a SH dot product. We define the SH projection of the BRDF as
B, (V). We also divide the Fresnel term by F, whose purpose will be explained later.

B, (V)= §§Rm (V,L)cos(0)Y,(w)dw (7)
1,(V) = qu)Zgl%Bm,i(V))

1.4.3.2 Fresnel Approximation

We first introduce two terms for convenience:

11| Page

Chapter 1: Lighting and Material of Halo 3

C,,(V) = §R, (V,L)cos(0)Y,(w)de
D, ()= (1~ (L-HY)R, (V.L)cos@)Y,(w)da

The first term denotes the integral of the specular reflection function with the SH
basis functions, while the second term is defined based on the Fresnel
approximation method by Schlick [ScHLIck94].

For constant Fresnel, '~ F,, then B, .(V)=C, ;(V), and the Equation 8 becomes:
8
L) =kF D 4C, (V)

i=0
For non-constant Fresnel, we can use the Schlick approximation [ScHLICk94]:

F~F+(1-F)-(L-H)).
Then

B, (" =C,,(V)+52D, (),

m,i

and

8
L0 =kF Y A(C00+52D,,0)
i=0
In the following we show how C, (V) and D, (V) can be pre-integrated offline.

1.4.3.3 Pre-Integration

By the isotropic property of the Cook Torrance reflectance model, we can always
integrate the shading result of Equation 3 in a local frame such that the view direction V
lies in the X-Z plane of the local frame. Therefore we only need to pre-integrate C, (V)

and D, (V) for some view directions in the X-Z plane.

Zz

X
Figure 9. The local coordinate frame where Z points along the normal, and V lies in the

X-Z plane.

12| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Figure 10. Pre-integrated C and D textures, from left to right, C(0,2,3,6), D(0,2,3,6)and
CD(7,8). Horizontal axis represents viewing changes and the vertical axis roughness
changes.

By the reflective symmetry property of the Cook Torrance reflectance model, we know
that C,_ (V) and D, (V) are all zero for i =1,4,5, and the variation in the textures are

very smooth in the direction of both m and V. Therefore, we pre-integrateC_.(J') and
D, ;(V)for 16 roughness (m) values in (0, 1) and 8 viewing directions in the X-Z plane,

m,i

m,i

yielding 12 2D textures. The texture values are all in (-2, 2), so we quantize them by 16
bits, or store them in 16-bits float format. The total storage is about 16*8*6*2*2 = 3 KB.

Figure 3 shows the integrated C and D textures. With these lookup tables, we can now
render any Cook Torrance BRDF in real time and the only storage required is the
parameters themselves.

To render area specular, we first construct a local frame as in Figure 9. The lighting SH
vector is then rotated into this local frame. To compute the glossy reflectance, we look
up the pre-integrated C and D textures, which we then integrate with the lighting
through an SH dot product. The HLSL code is listed in the appendix.

1.5 Conclusion

In this chapter we have described the core lighting and material models used in Halo 3.
The SH light map representation is a natural extension to an existing light mapping
pipeline. By storing incident radiance as a SH vector, instead of exit radiance as a color,
we can capture sharp shadows just like light maps, and bump maps can be rendered
directly from it. SH light maps require much larger storage than traditional light maps,
however, lighting data can be heavily compressed with minimal loss of perceptible
quality ([HUWANGO8] describes our multi-stage compression algorithm for SH light
maps).

By separating the all frequency reflectance into layers, each of which can then be
rendered using different real time techniques, we can preserve the realism of a real
word material while keeping the computational and storage costs to manageable levels
for a real time game.

13| Page

Chapter 1: Lighting and Material of Halo 3

We introduced a novel way of parameterizing the Cook Torrance BRDF model in
spherical harmonic basis, which can then be rendered under global and environment
lighting or any lighting that can be represented in SH. Using small 2D textures as look up
tables, all parameters of the BRDF models are free parameters, and we can render any
Cook Torrance material efficiently and without per material storage other than the
parameters themselves. Spatially varying materials are also possible by putting the
parameters in a texture.

Finally, we show that advanced lighting and material models are feasible in the current
generation of real time hardware, and with the projected increase of computational
power of future generations, lighting and material improvements in games will continue
and will result in significant improvements in the realism of games.

1.6 Acknowledgements

The Halo 3 graphics engine was developed by a team of dedicated engineers and
researchers, they are:

Bungie Graphics Team: Hao Chen, Ben Wallace, Chris Tchou, David Cook, Xi Wang. And
Microsoft Research Asia: Xinguo Liu, Yaohua Hu, Zhipeng Hu, Kun Zhou, Minmin Gong.

The authors would like to thank the following people for their contribution to the Halo 3
graphics engine: Peter Pike Sloan, Baining Guo, Harry Shum, Kutta Srinivasan, Matt Lee,
Mikey Wetzel.

1.7 References:

[BasriJAcoBs03] BAsRi, R., AND Jacoss, D. W. 2003. Lambertian reflectance and
linear subspaces. /EEE Trans. Pattern Anal. Mach. Intell. 25, 2, pp. 218-
233.

[BLINN77] BLINN, J. F. 1977. Models of light reflection for computer synthesized
pictures. ACM SIGGRAPH Comput. Graph. 11, 2, pp. 192-198.

[CHENO8] CHEN, H. Lighting and materials of Halo 3. Game Developers
Conference, 2008.

[CookToRRANCE81] CooK, R. L., AND TORRANCE, K. E. 1981. A reflectance model
for computer graphics. In Proceedings of ACM SIGGRAPH 1981, pp. 307-
316.

14| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

[GoobTAYLORO5] Goob, O., AND TAYLOR, Z. 2005. Optimized photon tracing using
spherical harmonic light maps. In Proceedings of ACM SIGGRAPH 2005,
Technical Sketches, p. 53.

[GSHG98] GREGER, G., SHIRLEY, P., HuBBARD, P. M., AND GREENBERG, D. P. 1998.
The irradiance volume. /EEE Comput. Graph. Appl. 18, 2, pp. 32-43.

[HUWANGO8] Hu, Y., aAND WaANG, X. Lightmap compression in Halo 3. Game
Developers Conference, 2008.

[ICG86] ImmEL, D. S., CoHEN, M. F., AND GREENBERG, D. P. 1986. A radiosity
method for non-diffuse environments. ACM SIGGRAPH Comput. Graph.
20, 4, pp. 133-142.

[KaJiva86] Kadiva, J. T. 1986. The rendering equation. In Proceedings of ACM
SIGGRAPH 1986, pp. 143-150.

[KSS02] KauTz, J., SLOAN, P.-P., AND SNYDER, J. 2002. Fast, arbitrary brdf shading
for low-frequency lighting using spherical harmonics. In Proceedings of the
13th Eurographics workshop on Rendering 2002, pp. 291-296.

[NDMO035] NGaN, A., DUrAND, F., AND MATusiK, W. 2005. Experimental analysis of
brdf models. In Proceedings of the Eurographics Symposium on Rendering
2005, pp. 117-226.

[OATO5] OAT, C. Irradiance Volumes for Games, Game Developers Conference,
2005. http://ati.amd.com/developer/gdc/GDC2005_PracticalPRT.pdf

[PSS99] PREETHAM, A.J., SHIRLEY, P. AND SMITS, B. 1999. A Practical Analytic

Model for Daylight, In Proceedings of Siggraph 1999, pp. 91 — 100, Los
Angeles, CA.

[RAMAMOORTHIHANRAHANO1] RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An efficient
representation for irradiance environment maps. In Proceedings of ACM
SIGGRAPH 2001, pp. 497-500.

[RAMAMOORTHIHANRAHANO1B] RAMAMOORTHI, R., AND HANRAHAN, P. 2001. On the
relationship between radiance and irradiance: Determining the illumination
from images of a convex Lambertian object. Journal of the Optical Society
of America, Vol. 18, 10, pp. 2448-2459.

15| Page

Chapter 1: Lighting and Material of Halo 3

[RAMAMOORTHIHANRAHANO2] RAMAMOORTHI, R., AND HANRAHAN, P. 2002. Frequency
space environment map rendering. In Proceedings of ACM SIGGRAPH
2002, 517-526.

[ScHLICk94] ScHLick, C. 1994. An inexpensive BRDF model for physically-based
rendering. Computer Graphics Forums. 13, (3), 233-246.

[SLOANSNYDERO2] SLOAN, P.-P., KauTtz, J., AND SNYDER, J. 2002. Precomputed
radiance transfer for real-time rendering in dynamic, low frequency lighting
environments. ACM Trans. Graph. 21, 3, 527-536.

[SHHS03] StoaN, P.-P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered
principal components for precomputed radiance transfer. ACM Trans.
Graph. 22, 3, 382-391.

[VILLEGASSEANOS8] VILLEGAS, L., AND SEAN S. Life on the Bungie Farm: Fun Things

to Do with 180 Servers . Game Developers Conference, 2008.

16 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Appendix A. Shader Code Listings:

float3 diffuse reflectance(float3 normal, float4 lighting constants[10]
{

float cl 0.429043f;

float c2 = 0.511664f;

float c4 = 0.886227f;

float3 x1, x2, x3;

//linear

xl.r = dot(normal, lighting constants([1l].rgb);
xl.g = dot(normal, lighting constants[2].rgb);
x1.b = dot(normal, lighting constants[3].rgb);

//quadratic

float3 a = normal.xyz*normal.yzx;

x2.r = dot(a.xyz, lighting constants[4].rgb);
x2.9 = dot(a.xyz, lighting constants[5].rgb);
x2.b = dot(a.xyz, lighting constants[6].rgb);

float4d b = floatd4 (normal.xyz*normal.xyz, 1.£/3.f);
x3.r = dot(b.xyzw, lighting constants[7].rgba);
x3.g = dot(b.xyzw, lighting constants[8].rgba);
x3.b = dot(b.xyzw, lighting constants[9].rgba);

float3 lightprobe color=
c4 * lighting constants[0] + (-2.f*c2) * x1 + (-2.f*cl)*x2 - cl * x3;0)

return lightprobe color/3.1415926535f;
}

void pack constants(in float3 sh[9], out float4 1c[10]
{

[0]= floatd (sh[0], 0);
[1]= float4 (sh[3].r, sh[l].xr, -sh[2].r, 0Q);
[2]= float4(sh[3].9, sh[l].g, -sh[2].g9, 0);
[3]1= float4(sh[3].b, sh[l].b, -sh[2].b, 0);
c[4]= floatd4 (-sh[4].r,sh[5].r, sh[7].x, O);
[5]= float4 (-sh[4].g,sh[5].g, sh[7].g, 0);
[6]= float4(-sh[4].b,sh[5].b, sh[7].b, 0);
[7]= float4(-sh[8].r, sh[8].r,-sh[6].r*1.7320508f
sh[6].r*1.7320508f) ;
1c[8]= float4(-sh[8].g, sh[8].g,-sh[6].g*1.7320508f,
sh[6].9*1.7320508f) ;
1c[9]= float4(-sh[8].b, sh[8].b,-sh[6].b*1.7320508f%,
sh[6].b*1.7320508%) ;

Listing 1. HLSL shader code for rendering diffuse reflectance from SH Light map. Notice
a quadratic SH vector is pre-packed into 10 £1oat4 constants.

17 |Page

Chapter 1: Lighting and Material of Halo 3

void calc material analytic specular cook torrance ps(
in float3 view dir,
in float3 normal dir,
in float3 reflect dir,
in float3 light dir,
in float3 light intensity,
in float3 c fresnel fO0,
in float c¢_ toughness,
out float3 analytic specular)

float n dot 1 = dot(normal dir, light dir);

float n dot v = dot(normal dir, view dir);

float min dot = min(n dot 1, n dot v);

if (min _dot > 0)

{
// geometric attenuation
float3 half vector = normalize(view dir + light dir
float n dot h = dot(normal dir, half vector);
float v dot h = dot(view dir, half vector);

);

float G = 2 * n dot h * min dot / (saturate(v dot h));

//calculate fresnel term

float3 f0= c fresnel fO0;

float3 sqrt f0 = sqrt(£0);

float3 n = (1.f + sgrt f0)/(1.0 - sgrt fO);
float3 g = sqrt(n*n + v dot h*v dot h - 1.f);
float3 gpc = g + v _dot h;

float3 gmc = g - v_dot h;

float3 r =(v_dot h*gpc-1.f v_dot h*gmc+l.f);

)/ (
float3 F= (0.5f*((gmc*gmc)/ (gpc*gpc+0.00001f))*(1.f+r*r));

//calculate the distribution term

float t roughness= c_ toughness;

float m squared= t roughness*t roughness;

float cosine alpha squared = n dot h * n dot h;

float D;

D= exp ((cosine alpha squared-1)/
(m_squared*cosine alpha squared))/
(

m squared*cosine alpha squared*cosine alpha squared) ;

//puting it all together

analytic specular= D*saturate (G)/(3.14159265 * n dot v) *F;

analytic specular*= light intensity;
}

else

{
analytic specular= 0.0f;

}

Listing 2. Cook Torrance BRDF evaluated directly in
for the analytical specular. The dominant light is a
quadratic SH coefficients.

18| Page

shader from a point light source
directional light fitted from the

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

void area specular cook torrance (
in float3 view dir,
in float3 rotate z,
in float4 sh 0,
in float4 sh 312[3],
in float4 sh 457[3],
in float4 sh 8866([3],
in float roughness,
in float r_dot_ 1,
out float3 area specular)

float3 specular part;

float3 schlick part;

//build the local frame

float3 rotate x= normalize(view dir-dot (view dir,rotate z)*rotate z);
float3 rotate y= cross(rotate z, rotate x);

//calculate the texure coord for lookup
float2 view lookup= float2 (dot (view dir,rotate x), roughness);

// bases: 0,2,3,6
float4 c value= tex2D(g sampler cc0236, view lookup);
float4 d value= tex2D(g sampler dd0236, view_ lookup) ;

//rotate lighting basis 0,2,3,6 into local frame

float4 quadratic a, quadratic b, sh local;

quadratic a.xyz= rotate z.yzx * rotate z.xyz *(-SQRT3);

quadratic b= float4 (rotate z.xyz*rotate z.xyz,1.0£/3.0f)*0.5f* (-SQRT3) ;

//red

sh local.xyz= sh rotate 023(O,
rotate x,
rotate z,
sh 0,
sh 312);

sh local.w= dot (quadratic a.xyz,

sh 457[0] .xyz) +dot (quadratic b.xyzw, sh 8866[0].xyzw);

//dot with C and D look up
sh local*= float4(1.0f, r dot 1, r dot 1, r dot 1);
specular part.r= dot(c value, sh local);

schlick part.r= dot(d value, sh local);

//repeat for green and blue

Listing 3 Part 1. Shader code for area specular calculation, continues next page

19| Page

Chapter 1: Lighting and Material of Halo 3

// basis - 7
c value= tex2D(g sampler c78d78, view lookup).SWIZZLE;

quadratic a.xyz = rotate x.xyz * rotate z.yzx + rotate x.yzx *
rotate z.xyz;
quadratic b.xyz = rotate x.xyz * rotate z.xyz;

sh local.rgb= float3(dot (quadratic a.xyz, sh 457[0].xyz) +
dot (quadratic b.xyz, sh 8866[0].xyz),
dot (quadratic a.xyz,sh 457[1].xyz) +
dot (quadratic b.xyz, sh 8866[1].xyz),
dot (quadratic a.xyz, sh 457[2].xyz) +
dot (quadratic b.xyz, sh 8866[2].xyz));

sh local*= r dot 1;

//cT * L7

specular part.rgb+= c value.x*sh local.rgb;
//d7 * L7

schlick part.rgb+= c value.z*sh local.rgb;

//basis - 8
quadratic a.xyz = rotate x.xyz * rotate x.yzx - rotate y.yzx *
rotate_y.xyz;
quadratic b.xyz = 0.5f* (rotate x.xyz * rotate x.xyz - rotate y.xyz *
rotate y.xyz);
sh local.rgb= float3(-dot (quadratic a.xyz, sh 457[0].xyz) -
dot (quadratic b.xyz, sh 8866[0].xyz),
-dot (quadratic a.xyz, sh 457[1].xyz) -
dot (quadratic b.xyz, sh 8866[1].xyz),
-dot (quadratic a.xyz, sh 457[2].xyz) -
dot (quadratic b.xyz, sh 8866[2].xyz));
sh local*= r dot 1;

//c8 * L8

specular part.rgb+= c value.y*sh local.rgb;
//d8 * L8

schlick part.rgb+= c value.w*sh local.rgb;
schlick part= schlick part * 0.01f;

area specular= specular part*k f0 + (1 - k f0)*schlick part;
}
float3 sh rotate 023 (int irgb, float3 rotate x, float3 rotate z,
float4 sh O,
float4 sh 312[3])
float3 result = float3(sh 0[irgb],
-dot (rotate z.xyz, sh 312[irgb].xyz),
dot (rotate x.xyz, sh 312[irgb].xyz));

return result;

Listing 3 Part 2. Shader code for area specular calculation

Appendix B. Phong BRDF

Let ¥ be the reflection direction of the viewing direction around the surface normal.
We define a glossy reflection distribution function as follows:

1 1 tan’ o
R,(V,L)= expl-—— 21,
w7 1) cos@, mm’ cos’ a A

20| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

where @ is the angle between the reflection direction ¥ and the incident light direction
L . Assume that the effective incoming light has almost the same incident angle as 6,,

the total energy is conserved, since

2
f*;%exp{— tan za}da) =1.
m” cos” a m

Under an environmental lighting L(w), the illumination result can be computed by:

V)= gj

tan’

}E(a)) cos(f)dw

exp< —
cosd, m? cos’ a

Again assume that the effective incoming light has almost the same incident angle as 6,
(i.e. the material is high glossy), we have

1V)= m ! exp{— ta’r; a}ﬁ(a)) cos(6,)dw

cos O, zm? cos’ a

1 tan” o
:mmexp{ }z(Ydow = Z/LEW(V)

where

tan 04

E, (V)= §————exp{- Y,(w)de
7Z7’I’l COS (04

(note that angle & has dependence on V' .)

21| Page

Chapter 1: Lighting and Material of Halo 3

Appendix C. Additional Screen Captures.

22| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Chapter 2

Advanced Virtual Texture Topics

Martin Mittring®
Crytek GmbH

C2YT=K

2.1 Abstract

A virtual texture® is a mip-mapped texture used as cache to allow a much higher
resolution texture to be emulated for real-time rendering, while only partly residing in
texture memory. This functionality is already accessible with the efficient pixel shader
capabilities available on the recent generations of commodity GPUs. In this chapter we
will be discussing technical implications on engine design due to virtual textures use,
content creation issues, results, performance and image quality. We will also cover
several practical examples to highlight the challenges and to offer solutions. These
include texture filtering, block compression, float precision, disk streaming, UV borders,
mip-map generation, LOD selection and more.

! Martin@Crytek.de
% The term is derived from the OS/CPU feature “virtual memory”, which allows transparent memory
access to a larger address space than the physical memory.

23| Page

Chapter 2: Advanced Virtual Texture Topics

2.2 Motivation

The diagram in Figure shows how different hardware devices for texture storage can be
classified with a different speed/amount ratio. Caching is a common technique to allow
fast access to larger data set to live in slower memory. The virtual texture described
here uses using traditional texture mapping to cache data coming from the respective
slower content device.

Perpherie Compuier GRU)
Hard drive GPU texture cache
Network Main memory Texture
DVD/CD... Video memory

| J

{ Lmenmt Specd)
\l \/

Figure 2. Hardware can be classified depending on a speed/amount ratio.

Note: On the GPU a texture lookup operation is limited to one texture only and random
access to the whole video memory is not possible, limited in size® or high latency.
Because of that the diagram in Figure lists “Texture” and “Video memory” as separate
units.

2.2.1 Texture Streaming is Becoming a Necessity

Texture mapping is common-place and highly efficient on consumer GPUs for over a
decade. Many challenges have been solved by hardware support for mip-mapping,
advanced texture filtering, border clamp/mirror rules and compressed texture formats.
Modern real-time rendering engines are faced with another challenge: Screen resolution
and higher quality standards now require high resolution textures and for draw call
efficiency it’s even advised to share one texture for multiple objects [NVIDIAO4]. Some
graphics hardware already supports texture resolutions up to 8K (8192), but that might
not be enough for some applications, and, more of a problem, the memory
requirements grow rapidly with texture size. Because the simulated world size is also
expected to be much larger it’s no longer possible to keep all textures in graphic card
memory (a typical limit is 512MB) and not even in main memory. Having more main
memory doesn’t help when limited being by the 32 bit address space (2GB on typical
32bit OS). A 64 bit OS allows using more main memory but most installed OS and

*> The maximum size of a texture can be a limiting factor (usually from 1024 to 8192 depending on a
specific hardware generation).

24| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

hardware is still 32 bit. Limited amount of physical memory can be compensated by
using virtual memory from hard drive. Unfortunately this option is not viable for real-
time rendering as traditional virtual memory (as an OS and hardware feature) stalls until
the request is resolved. The situation is exacerbated without an available hard-drive as it
might be the case on consoles. To overcome this and to get a fast level loading time
modern engines are required to do texture streaming.

2.2.2 Problems with Per Mip-Map Texture Streaming

We can avoid stalling while requesting to load a specific texture mip level from the hard-
drive by using a lower mip level as a fallback until the desired level is uploaded to the
graphics card. This is acceptable for real-time games and the lower resolution texture
can go unnoticed with sufficient care. Unfortunately it’s basically impossible to add or
remove a mip-map dynamically. The Direct3D9 function setLop () was made for that
but that only affects the video memory alone and doesn’t change the issue of the
physical and virtual memory. Most hardware keeps all mip-maps in one block of
continuous memory and updating a single mip-level becomes a full mip chain update. In
Crysis™ (Error! Reference source not found.) we wanted to save virtual memory so to
adjust the mip-level we had to create and release textures at runtime. That is very bad
for stable performance and MultiGPU (SLI/Crossfire) scaling but it was a manageable
solution at the time. Streaming allowed us to stay within the 32 bit limits with run-time
data requirement sometimes exceeding the limits. On 64 bit and enough main memory
or when using half resolution textures the texture streaming is not necessary and
performance is more stable.

Figure 3. The screenshot from the game Crysis™ shows the need for texture streaming:
large rich environments with many details.

25| Page

Chapter 2: Advanced Virtual Texture Topics

Avoiding Create () and Release () calls at runtime is possible when textures can be
reused, but only if texture formats and sizes match. This is very restricting and even
wasteful on the memory usage, and therefore not a practical option. As a result, this
problem is a serious issue for game developers and deserves better APl and hardware
support.

The idea of virtual textures is to manage the texture memory at a different granularity
than the mip-map level. Often only small areas are required in each mip-map and thus
uploading a full mip-map would be wasteful. It’s much more efficient if we only upload
the actually required portions. The virtual texture method itself is simple, but it has a lot
of interesting related topics attached to it which we will discuss here after explaining the
basic method itself.

2.3 Implementing Virtual Textures with Pixel Shaders

2.3.1 Virtual Texture — A Definition

For the virtual texture we only keep relevant parts of the texture in fast memory and
asynchronously request missing parts from a slower memory (while using the content of
a lower mip-map as fall-back). This implies that we need to keep parts of lower mip-
maps in memory and these parts need to be loaded first. To allow efficient texture
lookups coherent memory access is achieved by slicing up the mip-mapped texture into
reasonably sized pieces. Using a fixed size for all pieces (now called texture tiles) the
cache can be managed more easily and all tile operations, e.g. reading or copying, have
constant time and memory characteristics. Mip-maps smaller than the tile size are not
handled by our implementation. This is often acceptable for applications like terrain
rendering where the texture is never that far away and little aliasing is acceptable. If
required, this can be solved as well by simply packing multiple mip-maps into one tile.
For distant objects it's even possible to fall back to normal mip-mapped texture
mapping, but that requires a separate system for managing that.

As shown in Figure 4, a typical virtual texture is created from some source image format
at preprocessing time without imposing the APl and graphics hardware limits on texture
size. The data is stored on any lower access speed device, such as hard drive. Unused
areas of the virtual texture can be dropped (saving memory as a nice side bonus). The
texture in the video memory (now called tile cache) consists of tiles required to render
the 3D view. We also need the indirection information in order to efficiently reconstruct
the virtual texture layout. Both the tile texture cache and the indirection texture are
dynamic and adapt to one or multiple views.

To manage our virtual texture we use a quad-tree because all required operations can
be implemented in constant time. Here the state of the tree represents the currently
used texture tiles for a virtual texture. All nodes and leaves are associated with a texture

26 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

tile and in a basic implementation only the highest available resolution in the quad-tree
is used. The lower resolution data is stored as fall-back when we drop some leafs and
can also be used to fade in higher resolution texture tiles gradually. We refine or
coarsen the virtual texture only at the leaf level. In addition to the quad-tree we need
additional code implementing the cache strategy (e.g. Least Recently Used).

Tile Texture Cache

Indirection Texture 3D Rendering

Figure 4. Typical usage scenario of the virtual texture method

2.3.2 Reconstruction in the Pixel Shader

The reconstruction needs to be very efficient. While some applications allow efficient
indirections per draw call* or pre-split geometry®, this is too limiting in general and hard
to implement efficiently for general geometry. Simply using a pixel shader to implement
this functionality is straight-forward and intuitive. This code returns the texture

* Games like Far CrywI or CrysiswI render one terrain sector with texture tile per draw call. That allows the
tile cache to be split in individual texture and that simplifies tile updates.
> |t’s possible to setup the vertex texture coordinates to render multiple tiles in one draw call.

27 |Page

Chapter 2: Advanced Virtual Texture Topics

coordinates in the tile cache texture for a given virtual texture coordinate. This even
allows emulating texture coordinate addressing modes like “warp” or “mirror”.

Here we assume at least 32 bit float precision in the computations (which is not
supported by older pixel shader versions, but is common by latest generations of
DirectX® 9.0c-capable graphics hardware). Note that on DirectX® 9 you have to offset
your texture lookups by half a texel. In OpenGL you have to do similar computations.

Efficiency is very important as this code is executed for every pixel. This is why the
guad-tree traversal in the pixel shader is replaced by a single unfiltered texture lookup.
This texture (now called indirection texture) can be quite small in memory and because
of the coherent texture lookups it is also very bandwidth friendly. A single texture
lookup allows computing the texture coordinates in the tile cache with simple math in
constant time.

The idea of implementing a virtual texture using a pixel shader received a lot of
attention after John Carmack mentioned the “Mega texture” technique he has been
working on (as described in [IDTECH507]). The technique is used in the commercial
product “Quake Wars” and is currently developed to a more generalized solution at id
Software. The basic idea is clear, but implementation details are not described. Sean
Barrett investigated further and shared his knowledge and his version of the method at
GDC 2008. It’s an advised read for anyone that wants to implement it [BARRETTOS].

28| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

The following HLSL code can be used in the pixel shader to compute for the given virtual
texture coordinate the associated tile cache texture coordinate:

float4 g vIndir; // w,h,1/w,1/h indirection texture extend
float4 g Cache; // w,h,1/w,1/h tile cache texture extend
float4 g CacheMulTilesize; // w,h,1/w,1/h tile cache texture extend
// * tilesize

sampler IndirMap = sampler state
{

Texture = <IndirTexture>;

MipFilter = POINT;

MinFilter = POINT;
MagFilter = POINT;
// ~MIPMAPLODBIAS = 7; // using mip-mapped indirection texture,
// 7 for 128x128
bi

float2 AdjustTexCoordforAT(float2 vTexIn)

{
float fHalf = 0.5f; // half texel for DX9, 0 for DX10

float2 TileIntFrac = vTexIn*g vIndir.xy;

float2 TileFrac = frac(TileIntFrac)*g vIndir.zw;

float2 TileInt = vTexIn - TileFrac;

float4 vTiledTextureData = tex2D(IndirMap,TileInt+fHalf*g vIndir.zw);

float2 vScale = vTiledTextureData.bb;
float2 vOffset = vTiledTextureData.rg;

float2 vWithinTile = frac(TileIntFrac * vScale);

return vOffset + vWithinTile*g CacheMulTilesize.zw + fHalf*g Cache.zw;

}

Listing 1. HLSL Shader Code to compute the texture coordinates in the tile cache texture

The code can be optimized further but care must be taken to keep the floating point
error minimal. The texture cache should not have mip-maps and the lookup should be
bilinear only.

In [BARRETTO8] Sean Barrett mentions the simplest shader fragment he came up with
(with a hint from John Carmack):

tex page , vtc , tex0 , 2D
mad phys.xy, vtc , page.xyxy, page.zwzw
tex color , phys, texl , 2D

Listing 2. Pixel shader assembler code to compute the texture coordinates with the tile cache lookup
This would be 2 instructions only for the texture coordinate computation. We haven’t

tried that but float precision might be an issue, especially when using 64 bit or even 32
bit textures - using a 128 bit texture may be slower on some hardware.

29| Page

Chapter 2: Advanced Virtual Texture Topics

2.3.2.1 The Indirection Texture

The indirection texture can be easily generated from the data in the quad-tree. With a
single unfiltered lookup into the indirection texture and simple math with constants we
can compute the texture coordinates in the tile cache. The values stored in a texel
contain the scale of the tile and the 2D offset in tile cache. In our implementation we
use a 64 bit texture with FP16 channels. Using a 32 bit texture format with 8 bit
channels is possible but you have to adjust the values in the pixel shader with additional
instructions. Beware that scaling might not return the values you would expect. By
storing a value from 0 to 255 in the texture you get values from 0.0 to 1.0 in the pixel
shader. This result is a guaranteed. Scaling these values by 255.0 you would think would
result in integer values. However, this may not be the case. Floating point math can be
an issue, but even worse is that on some hardware the precision seems to be lower,
rather comparable to 16 bit floats. In [BARRETTO8] the problem was solved by rounding®,
but the author admits that this might be not the most efficient approach.

Here we use a 64 bit (4 channels FP16) texture format as it is compact and doesn’t
suffer from the issues mentioned before. The memory bandwidth requirements for our
use are minimal as the method has a very high texture lookup coherency, i.e. texture
cache misses are rare. However depending on the hardware the lookup itself might
require multiple cycles on 64 bit or 128 bit texture formats. Integer textures, an integer
texture lookup’ and integer math can be a good choice on some hardware as we want
constant precision over whole domain and float is likely to cause problems here. This
would also allow using higher resolution texture caches (> 8K) easily.

® To get the integer value from of a 8 bit channel this shader code was used: floor(channel*255+0.5)
’ Direct3D 10 offers the HLSL Load() but only unfiltered

30| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008

N. Tatarchuk (Editor)

The following C/C++ code can be used to compute the indirection texture content:

// float to fpl6(sle5ml0)
WORD float2fpl6(float x)
{
uint32 dwFloat =
uint32 dwMantissa =
int iExp =
uint32 dwSign =

dwFloat

return (WORD) ((dwSign<<15)

| (dwMantissa>>13));
}

WORD texel[4]; //
RECT recTile; //
int iLod; //
int iSquareExtend; //
float fInvTileCache; //

texel[0]
texel[1l]

= float2fpl6 (recTile.
float2fpl6 (recTile.

conversion

(int) ((dwFloat>>23)
dwFloat>>31;

(does not handle all cases)

*((uint32 *)&x);

& OxTEffff;

& Oxff) - (int)Ox7f;

(((uint32) (1Exp+0xf))<<10)

texel output

in texels in the tilecache texture
0=full domain, 1=2x2, 2=4x4,
indirection texture size in texels
tile.Width / texCacheTexture.Width

left*fInvTileCache) ;
top*fInvTileCache) ;

texel[2]

float2fpl6 ((1<<iLod)/ iSquareExtend) ;

texel[3]

0; // unused

Listing 3. C/C++ code to compute the content of the FP16 indirection texture

Using a mip-mapped indirection texture requires a few more texture update operations
but it also allows per-pixel LOD which looks much smoother. The per-pixel LOD code
computes a lower (or the same) LOD that is available in the texture tile cache. Standard
texture mapping with LOD adjustment® can be sufficient but anisotropic texture
mapping would provide better quality at steep angles. In Figure different texture
filtering modes are shown.

The virtual texture technique can be extended to more than two dimensions. By using
volume textures or multiple slices in a 2D texture the lookup is still quite efficient.
However multidimensional content scales quickly regarding memory demand and then
it's better to adapt at a finer granularity, i.e. a smaller tile size is needed. In GPGPU
applications (such as [LEFOHNO3]) data is often processed in volume textures and often
barely fits into video memory. Caching can be done as usual but processing might
require the full data set and locally varying LOD is not common and thus dynamic
methods are often not used there.

¥ See MIPMAPLODBIAS in the pixel shader code

31| Page

Chapter 2: Advanced Virtual Texture Topics

2.3.2.2 Efficient Filtering Through Borders

A naive implementation of bilinear filtering requires 4 lookups into the indirection
texture, 4 lookups in the tile cache, followed by bilinear interpolation in the shader.
While this may be somewhat reasonable for a hardware implementation, in the pixel
shader implementation this is wasteful with respect to performance. Adding a small
border is much more efficient as the much more efficient built-in hardware bilinear
filtering can be used. A one-pixel border is enough to get bilinear filtering on
uncompressed textures but in order to add support for DXT compressed textures a 4
pixel border is necessary. This is because the DXT block compression is based on 4x4
blocks and to avoid seams you need to add a full block to the border. Furthermore it’s
better to center the tile to get more stable results for imprecise texture coordinate
computations. That also simplifies the implementation of more advanced filtering like
bi-cubic filtering or anisotropic filtering. The later one would be an interesting topic for
this chapter but because we haven’t done any implementation we skip it here.

Unfortunately the additional borders waste memory, destroy the power-of-two texture
extents, and break the memory alignment of the tiles. If you have non-power-of-two
tiles it’s probably better to add some padding to the tile cache to create the texture with
power-of-two dimensions’. Otherwise you might be faced with undefined memory and
performance characteristics from the APIs and graphic card drivers.

Alternatively, instead of adding the border to the tile we can also reduce the tile size by
the border to allow the sum of both to be power of two'®. This is best for the hardware
implementation but resulting visual quality can suffer a lot. That loss is due to aliasing in
the mip-maps caused by the down sampling of the source texture to slightly less than its
half size. A good down-sampling algorithm can limit the aliasing in the lower mip-maps
but even the top mip-map is affected by this design decision and that can be visible
especially when using regular patterns in the texture.

2.3.2.3 Maximum Size of the Virtual Texture

As mentioned, our implementation is based on a single indirection only and assumes all
tiles in the tile cache have the same size you can compute the virtual texture resolution:

ReSOIUtionvirtual texture = ReSOIUtionlndirection texture * ReSOIUtiontexture tile without border

Examples: 16k = 128 * 128
65k = 256 * 256
256k = 256 * 1024

% e.g. for 7 tiles with 128+4 pixel extend (128+4)*7=924, the next power of two extend would be 1024
196 g. for 8 tiles with 124+4 pixel extend (124+4)*8=1024, but the usable tile size is no longer power of
two

32| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Using a larger tile size limits the adaptive property of the method and using a larger
indirection texture becomes inefficient when updating the texture, especially with CPU
updates. Unfortunately there is another limit for virtual texture resolution. With a
typical implementation using floating point math to run on older hardware the precision
of the float computations becomes a problem when the virtual texture resolution
becomes close to 65K. We may see reasonable performance for colour look-ups;
however, bilinear filtering will no longer be efficient. We can alleviate the problem by
careful ordering of our floating point operations, however, integer maths avoid this all
together.

2.3.2.4 Storing Different Attributes in the Tile Caches

You can comprise one tile cache of multiple textures to store attributes like diffuse,
specular or normal maps as long they share the same tile positions. After computing the
position in the tile cache it can be efficiently used for multiple lookups. With a bigger
border you can even use differently sized textures for the attributes you want to store.

2.3.2.5 Splitting the Tile Cache Over Multiple Textures

Instead of storing different attributes you can use multiple tile caches to get more cache
units, but here a new problem appears. Normal hardware rendering only allows to
texture from the same textures in one draw call. Performance can be much worse when
trying to overcome this limitation: Texture lookups through texture arrays are a bit
slower (Direct3D® 10 only) and the alternative of fetching data from several textures
and masking the result is even slower. That’s why it’s good to keep all tiles required for
one draw call in the in the same tile cache.

When using multiple tile caches you might end up with one tile cache overused while
another one is underused. Moving objects between different caches might be an option
but performance will no longer be constant, no matter what strategy you pick. Grouping
specific types of objects (e.g. one tile cache for terrain and one for objects) is the
simpler solution.

The maximum texture resolution supported on some hardware limits your tile cache
size. Here we have two simple solutions: You can tweak the LOD computation and
accept blurrier results or you add another cache in the graphic card memory, between
the texture and the main memory. Copying between VRAM and the texture is expected
to be fast. By computing the local LOD required as small as possible the tile cache can be
kept small (see the LOD computation methods described later). Rendering a view is
possible from the main tile cache, changing view angle additionally requires the
secondary cache and moving the view position requires secondary cache updates. The

33| Page

Chapter 2: Advanced Virtual Texture Topics

later ones can come from a slow media like the DVD and to minimize latency more
cache stages can be done on the hard drive and even in main memory.

2.3.2.6 Tile Cache Texture Updates

As already mentioned, to avoid bilinear filtering artefacts with DXT block compressed
textures we require an additional border of 4 pixels. Due to the lossy DXT compression
we need exactly the same block content when compressing blocks of neighbour tiles;
otherwise we might reconstruct wrong colour values and thus resulting in visible seams.

There are three basic methods to update a part of a mip-map from CPU. Depending on
the specific graphics API*' and on the graphics card use and the driver version,
performance characteristics may be not clearly defined. This is actually is the major
problem of the implementation and on some configurations it might even make the
method unusable. Further testing is needed to quantify this claim. Experience shows
that such driver issues often get addressed after a major game shipped using the
technology.

For the update of the tile cache texture we have some requirements:

e Fastin latency and throughput

e Bandwidth efficient (copy only the required part)

e Small memory overhead

e Updates should happen without stalls but correctly synchronized to get the right
texture state

e When updating the content by CPU there should be no copy from GPU memory
to CPU memory (discard should be used)

e For fast texturing from the tile cache texture it should be in the appropriate
memory layout (swizzled'?) and memory type (video memory). Note that on
some hardware compressed textures are stored in linear form (not swizzled).

e Multiple tile updates should have linear or better performance

All methods require some locking of either a full texture or a part of the texture. The
driver might do a full update and you probably would only notice on less powerful
hardware or with heavy bus usage. We're still investigating further into this area. To
describe the three basic methods we use the Direct3D 9 API.

Method 1: Direct CPU update:

The destination texture needs to be in p3proor ManceD and via the rockrect () function
a section of the texture is updated. This method wastes main memory, and most likely
the transfer is deferred till a draw call is using the texture. This method is simple but
likely to be less optimal when compared with the next two methods.

1 OpenGL, Direct3D® 9, Direct3D® 10 or the APIs used on modern consoles
12 A swizzled memory layout is a cache friendly layout for position coherent texture lookups.

34| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Method 2: With (small) intermediate tile texture:

Here we need one lockable intermediate texture hat can hold one tile (including
border). With the rockrect () function this texture is updated as a whole. With the
stretchRect () function the texture is then copied into the destination texture to replace
one tile only. This does not work with compressed textures (DXT) as they cannot be
used as render target format. For the stretchrect() function the source and the
destination requires to be in p3proor peraunT and that requires the source to be
p3DUSAGE DYNaMIC to be lockable. To find out if the driver supports dynamic textures,
you are ought to check the caps bits for papcars2 pynamIcTEXTURES but according to the
list in the DirectX SDK even the lowest SM20 cards support this feature.

Method 3: With (large) intermediate tile cache texture:

This method requires a lockable intermediate texture in p3proor system with the full
texture cache extend. With Lockrect () the intermediate texture is updated only where
required and a following vpdateTexture () function call is transferring the data to the
destination texture. updateTexture () requires the destination to be in p3proor pEFAULT.

2.3.2.7 Indirection Texture Update

Once the new tile is in the texture cache the indirection texture can be updated. We
wish to make this an efficient operation. The indirection texture requires little memory
therefore bandwidth is not a issue. However, using several indirection textures and
updating them often can become a performance bottleneck. The texture can be
updated from the CPU by locking or uploading a new texture. This can cause irregular
performance characteristics on current APIs but at the same time has proven to be an
acceptable solution. Locking a resource that is in use by the GPU can definitely produce
some hitches unless clever renaming is done on the driver side.

If you choose to have a render target texture format for your indirection texture you can
also consider GPU updates triggered by CPU. Updates can be done by draw calls and
simple quads can be rendered to the texture to update even large regions efficiently.
There shouldn’t be too many updates as tile cache updates should be rare and both rely
on each other.

In our implementation the indirection texture still has a channel left and storing a tile
blend value is possible. With extra shader cost this allows hiding texture tile
replacement by slowly blending tiles in or out. A filtered blend value would be even
nicer as it allows hiding the seams between the tiles. However this can hide details and
experience showed satisfying results without this feature.

35| Page

Chapter 2: Advanced Virtual Texture Topics

2.3.3 Mip-Mapping and Virtual Textures

It’s best to generate the mip-maps and do the texture compression in an offline process.
This way a high quality implementation can be used and the data is optimally prepared
for fast access. This is similar to a normal production pipeline but some details differ.

For efficient streaming the mip-maps are organized on disk as tiles of continues blocks
and in that form the data needs to be generated. Most mip-map computation
implementations assume that the textures can be fully loaded into memory. In that
case, developers may waste memory on a large texel format and buffer duplication.
When using huge virtual textures you have to assume that the texture cannot be
processed in memory, especially if you want your tools to run on 32 bit OS. Fortunately
it’s not too difficult to make the mip-map generation code running without keeping the
full data in memory.

2.3.3.1 Out of Core Mip-Map Generation

Typically the input data is stored on the disk in a standard image format. For efficient
processing we convert it into a form that allows fast access for algorithms with read and
write operations with strong locality. Here again we can make use of some tile based
data layout. The tile size here is not dependent on the virtual texture tile size and the
border pixels are undesired because that would add redundancy. Redundant data like
this can speed up the processing under certain circumstances, but it might cause other
problems in the system.

We need a class that can read a section of the image but completely hiding the tile
based data layout. The input area can be defined by any rectangle, even outside of the
source domain. Pixels outside of the domain can return the wrapped content or a
border colour. The class caches tiles that have been requested recently and it also
should supports writing tiles temporary on the hard drive. This is used to store the mip-
map levels during processing. Using the same functions to access the source data and
the intermediate data simplifies the code a lot.

Generating mip-maps is simple: Generate the lowest mip-map of the image recursively
by requesting images one mip-map higher and run your favourite mip-mapping filter
(add border depending on kernel). In a second pass the generated tiles are extracted,
compressed and stored into the streaming friendly format (add border for bilinear
filtering and compression).

2.3.3.2 Kernel Size for the Mip-Map Generation

For the mip-map generation you can pick either an even (e.g. 2x2 or 4x4) or an odd
sized (e.g. 3x3 or 5x5) kernel to down sample the texture to a quarter (half in both

36|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

dimensions). This affects the result a lot and that it even has implications on the virtual
texture pixel shader implementation.

The even-sized kernel is used for normal hardware mip-mapped texture mapping and is
therefore good to be used if a consistent look is important. This might be the case if you
want to render some object, maybe depending on distance, without the virtual textures.

Example: Box 2x2:
1/4 | 1/4
1/4 | 1/4

The odd-sized kernel simplifies the virtual texture pixel shader a bit and has the nice
property that texel positions with a unfiltered colour in a lower mip always exists in all
higher mips. This allows specifying UV coordinates that get always get a defined colour
in higher mip-maps. This is useful if you want to get seamless texture mapping or unique
UV unwrapped geometry. The alternative is to add border pixels but that’s only limiting
the problem, not solving it.

Example: Gauss 3x3:
1/ | 2/ | 1/
16 | 16 | 16
2/ | 4/ | 2/
16 | 16 | 16
1/ | 2/ | 1/
16 | 16 | 16

Properties of the different mip-mapping kernel sizes:

Example kernels 2x2 box, 4x4 gauss, 4x4 3x3 gauss, 5x5 gauss sharpen
sharpen

GPU creation Yes (fast for a full mip chain) No but easy to implement in PS

support

GPU rendering Yes (allow tri-linear and Bilinear yes, Mip mapped

support anisotropic) rendering has offset issues

Creation Speed fastest fast

Rectangular filtering artefacts Precise (texel center in higher

charts mips remain at position)

37| Page

Chapter 2: Advanced Virtual Texture Topics

Slightly better quality can be achieved by making use of the higher mip-maps (not only
the next higher one). This is even more important if your mip-maps are not exactly half
the size. As mentioned earlier it can be useful to keep the tile size including the border a
power of two, but that requires a more complex mip-map generation algorithm.

Hardware tri-linear filtering

Just a note on trilinear filtering — trilinear filtering is simple to implement in the shader
with additional texture fetches. If we wish to use hardware filtering for this, we need a
mip-mapped tile cache, i.e. redundant storage and updates of the texture tiles.
Additionally this requires a wider texture border and storing the tiles in two resolutions
wastes memory and complicates the updating a fair amount.

2.3.4 Possible Tile Sources

2.3.4.1 Streaming from Disk

A very good source for virtual texture tiles can be the hard drive [WAVERENO6]. Requests
are fulfilled in more or less constant time and memory requirements are constant.
Normal 10 functions on modern OS should be avoided because they try to cache and
combine requests which not only results in variable latency but the memory for this
cache is now competing with our application. Code or data which is not frequently
accessed can be paged out and we get frame-rate hitching. Windows offers 10
Completion ports which can be used efficiently and caching from the OS can be
disabled. Using this you have a more direct hardware access but the reads now needs to
align with the disk cluster size. As this can be different depending on which formatting
the user chose, it’s best to align your tile size and placement. The cluster size is a power
of two and often in the range from 4K to 32k™. Knowing this it’s clear that for best
performance the header size of the streaming file should be 0 or padded to align with
the cluster size. Each tile should be split in as few clusters as possible and preferably
nearby to tiles that have a similar locality. With non static compression where each tile
can have a different memory size this can be a bit tricky.

Streaming from DVD/CD/BD/HD DVD is more challenging as latency and bandwidth is
much worse [NoGUCHIOS8]. On first sight the latency might not sound like a problem if you
think of one tile being requested and coming in after that time. With very few tiles in
flight you actually get good performance but with more tiles the seek time is dominating
more and more. The alignment here is more important because the data is read and
decoded in the cluster size and ignoring this is wasting the precious performance. It

Blys good to have the code hiding the cluster alignment from the user code so the code works for
clusters of any size.

38| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

might make sense to consider a larger tile size to get better performance from hardware
with high latency.

2.3.4.2 Streaming over Network

Wouldn’t it be nice to join a multiplayer match without the need to download a map?
You can join an ongoing game and even see all the detailed changes like tire tracks and
decals that happened to the map. The normal game server or some special extra server
can bake decals and distribute them to the clients on demand. Compression might be
more important here, but it seems that downstream bandwidth will be much less of a
problem in the future.

2.3.4.3 Procedural Content Generation

Nowadays especially massive multiplayer games require a huge amount of work to fill
the world with details. Different areas should have a unique look to provide a richer
gaming experience. Having a technique that allows rendering more detail doesn’t help
either.

Many techniques [BRUNETONNEYRETO8] [LHNO4] [ANDERSSONO7] [Wo0ODARDO5] [QMKO06]
[GLANVILLEO4] [DACHSBACHERO6] are known to generate procedural content and if the
generation step is fast enough this can be even done on the fly similar to a texture tile
request from hard drive. Data can be generated on the CPU or the GPU. It's important
to give the artists enough control over this; otherwise you only remove the tiled texture
look without getting the content you want.

One of the simplest ways to generate huge texture resolutions is already used in many
games rendering terrain; Terrain detail often consists of some tiled textures that are
blended with interpolation information at a much lower resolution [BLooM0O]. This gives
good results, especially when combined with a low resolution texture to add variation
and break the tiling look.

Crysis uses terrain material blending (see Figure) to get a detailed ground texture for a
huge terrain but that method requires multiple materials to be blended at the pixel
level. The overdraw can be up to three as each terrain vertex is assigned to one material
and so blending within a triangle requires up to three passes. Additionally the detail
materials are modulated by a low frequency texture.

Using such techniques in real-time gets slower the more features you pack into the
system. Baking this in an offline process allows much more sophisticated blending and
keeps the rendering performance constant. This also allows baking details like roads or
tire tracks. You might have to use a lower resolution but this can be hidden with detail
texturing.

39| Page

Chapter 2: Advanced Virtual Texture Topics

Figure 5. Terrain material blending as it can be seen in Crysis (terrain detail objects
have been removed). Note that this is simply a reference — this particular screenshot was
not implemented using virtual texture method

Placing decals is one way to give the artists control over local areas. Decals can be used
in multiply mode to bring brightness and colour variation, or they can be used in alpha-
blend mode to locally replace existing content. As in nature, self similarity is common
and it is smart to reuse the decal. This can be taken to the limit where a large number of
placed decals form the surface itself. This allows breaking the tiled texture look but
doing it without control results in a repetitive decal look.

Figure 6. Example of a scenario that would benefit from using virtual textures - decals in
the game Crysis (roads, tire tracks, dirt) used on top of terrain material blending.

40| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Decals or Roads (as quantities in our game) can be seen as some special form of vector
graphics which supports high resolutions naturally. Classic 2D vector graphics can be
used for content like signs, advertisements or large scale paintings and even longer text
sections are possible. Even large content like terrain with roads and other man made
structure are suited for vector graphics content [BRUNETONNEYRETO8]. Again the data can
be generated on the fly or in an offline process.

The offline process has the advantage of constant rendering performance and even
more important, constant memory requirements. Rendering 3D content is often no
good idea as it requires additional memory for textures and meshes but there is one
interesting application that doesn’t suffer from this as it shares data with the normal
scene rendering. [FFBGO1] describes a method named ,Adaptive shadow maps“(ASM)
and for semi static scenes this can be an interesting option. The technique does not
require any mesh unwrapping as the shadow map is projected from the light source
perspective.

Other methods often require a unique UV unwrapping to store some intermediate data
of the shading computation. Instead of storing the shadow map depth value, the light
occlusion factor for a given surface position can be baked. Ambient occlusion, the effect
of multiple lights or static global illumination can be baked as well. Taking this to the
limit allows baking the final resulting colour of shading into a virtual texture. The data
can still be dynamic as the tiles can be updated but now shading is decoupled from
rendering and this brings along nice properties. It might be not the right time to ship
games fully based on that concept as graphics hardware is not made for that. In real-
time rendering this is known [BAKERO5] but rarely used, in offline rendering decoupling
shading from rasterization is used to great success in the REYES rendering system. In
contrast to per-pixel-shading the REYES system does heavy tessellation of the geometric
primitives, computes shading at that level and introduces other interesting things worth
checking out [GuANO7].

2.3.4.5 Sparse Textures

Encoding material properties might be limiting and blending materials with alpha masks
allows for much more flexible material blending. In [ANDERSSONQO7] sparse textures are
used to compress this kind of data efficiently. Texture tiles with the same content can
index to the same cache element and by using masks with larger areas of the same
value this allows good compression. If only few tiles need to be stored you might not
even require a dynamic cache. Then you just index with a static indirection texture into
a static tile cache. This can be seen as a special case of the normal adaptive texture
method and this way it integrates nicely with the dynamic virtual texture asset pipeline.
Even multiple indirections for multiple masks can be stored in one indirection texture™*.

% As a hint: The UV position of the tiles in the texture cache can be encoded in one component and the
scale might not be required.

41 |Page

Chapter 2: Advanced Virtual Texture Topics

2.3.4.6 Combo Textures

When using multiple masks the mentioned technique becomes less efficient.
Compression of the sparse textures is only efficient when using one indirection per
mask. An alternative is a novel technique we call the “Combo texture”. The method
allows to store up to 2" masks in n texture channels in a compressed form. The
compression is lossless under some controllable conditions and becomes lossy with
complex material blends. Texture filtering can be used as usual but filtering introduces
blending which again can suffer from the same compression issues.

Figure 7.The RGB Cube shows how up to 8 materials (A..H) can be blended with one
colour only.

Figure 8. Multiple materials can be blended using the combo texture method.
Left: Seven materials are blended on the RGB cube colours. Middle: A combo texture is
projected on a cube, setup to blend materials in many different ways. Right: Seven
materials are blended based on the combo texture from the image before.

42 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Figure 9.Combo texture results zoomed in
Left: Blending between two incompatible colours (vellow, black) causes leaking.
Middle: Bilinear filtering between two incompatible colours (black, white) causes
leaking.
Right: Bilinear filtering between two compatible colours (green, yellow) blends nicely.

If we use a 3 channel combo texture the properties of the method can be described on
the RGB cube (Figure). Each corner of the cube represents one material and eight
corners allow therefore eight materials to be blended. All corners and the edges allow
lossless compression as the linear blend between two materials can be expressed as a
linear blend between two positions in the cube. Expressing arbitrary material mixes or
blending between materials in general can introduce material-leaking™ or the wrong
amounts of certain materials. By smarty placing the materials in the right corners
artefacts often can be avoided. Artists can paint these combo textures easily but if they
paint material masks the material placement in the combo texture can be rearranged
much easier at a later stage. Material masks can be converted to combo textures or any
other representation before normal texture compression is applied in the art pipeline. If
the material leaking becomes too apparent the bilinear filtering can be replaced by
shader code that doesn’t exhibit this problem. These artefacts are usually only visible in
magnification where virtual textures can help to increase the resolution.

Figure 10. Four simple materials (colour: red, black, green, blue) are blended in a single
pass which results in the best quality.

The combo texture method can be implemented in a simple single pass shader if the
shader of the different materials are simple and share common properties (e.g. detail
materials, Phong materials that share textures and differ only in colours and specular
power). Figure 10 shows four most simple materials (solid colour) blended in a single
pass. With complex materials the possible shader permutation count explodes and a lot
of bandwidth would be wasted by data that gets masked away.

> Materials that haven’t been part of the mix are blending into the result.

43 | Page

Chapter 2: Advanced Virtual Texture Topics

A multi-pass solution based on frame-buffer blending would be more flexible.

Figure 11. The four simple materials are blended in 4 passes. (From left to right: 1"
pass, 2" pass, 3" pass, final pass)

Figure 11 demonstrates how such a technique works by using alpha blending. A simple
implementation could use additive blending but this requires more than 8 bit precision
in the frame buffer for an acceptable look. Better is to lerp'® with the frame buffer
content. To compute the blend factor we need to know the material blend factor and
the sum of the blend factors we have blended already. Because frame buffer blending
isn’t flexible and precise enough we compute the sum in the shader. The following
shader code illustrates the computation for eight materials:

float3 g ComboMask; // RGB material combo colour
// (3 channels for 8 materials)
// 000,100,010,110,001,101,011,111
float4 g_ComboSum0,g ComboSuml; // RGBA sum of the masks blended so far
// including the current
// (8 channels for 8 materials)
// 10000000, 11000000, 11100000, 11110000
// 11111000, 11111100, 11111110, 11111111

float ComputeComboAlpha (BETWEENVERTEXANDPIXEL Unified InOut)

{
float3 cCombo = tex2D(Sampler Combo, InOut.vBaseTexPos) .rgb;

float3 fSrcAlpha3 = g ComboMask*cCombo + (l1-g ComboMask) * (1-cCombo) ;
float fSrcAlpha3 = fSrcAlpha3.r*fSrcAlpha3.g*fSrcAlpha3.b;

float4d vComboRG = floatd (1-cCombo.r,cCombo.r,l-cCombo.r,cCombo.r)
* float4 (1-cCombo.g, l1-cCombo.qg, cCombo.g, cCombo.q) ;

float fSum = dot (vComboRG,g ComboSum0) * (1-cCombo.b)
+ dot (vComboRG, g ComboSuml) * (cCombo.b) ;

// + small numbers to avoid DivByZero
return (fSrcAlpha+0.00000001f)/(0.00000001f+fSum) ;
}

Listing 4. Shader to compute the alpha value when rendering a material with the combo
texture method

'®lerp = linear interpolation A*(1-factor)+B*factor

44 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Additional Notes:

e Using up to 8 materials and using an optional alpha channel for custom
properties is nice and useful; when using more than three channels the
technique becomes less intuitive and more artefacts can appear.

e A smart usage of combo textures might allow dropping other textures like
diffuse or specular textures.

e You can modify the combo texture to dynamically blend between different
materials (dirt, rust, damaged, wet).

e To avoid overdraw it is good to use alpha test and for static combo textures you
can create a static index buffer per material.

2.3.5 Mesh Parameterization

The virtual texture method relies on unwrapped 3D models and that can be done with
the usual techniques either by hand or in some automated way [FARINO2] [CARRHARTO2].
Knowing that the unwrapping is used with a virtual texture the layout can be optimized
for better performance. Unused areas are common in all unwrapping methods but
packing the data specifically to reduce the amount of wasted texture tiles allows faster
loading with less cache and storage memory required. The packing algorithm needs to
avoid the quad-tree borders at multiple levels (see Figure 12). Another important
criterion is to aim for similar locality between the texture space and world space, that
again at the granularity of the texture tiles.

Figure 1. By carefully placing the unwrapped mesh in the UV space less tiles are
requires at multiple levels of the quad tree (green tiles don’t need to be stored).

45| Page

Chapter 2: Advanced Virtual Texture Topics

2.3.5.1 Unique Unwrapping®’

The unwrapping does not have to be unique when using virtual textures but having a
unique unwrapping can have additional benefits. For the virtual texturing a unique
mapping has a higher but more consistent memory demand in the texture cache (see
“Computing the local LOD required”). Dynamic tile content virtually requires unique
unwrapping as texture updates should not affect other areas. Even static content might
require unique unwrapping if the content cannot be shared. Examples for that are light
maps or object-space normal maps. Normal maps in tangent-space are easier to
compress but object/world-space allows better quality and simpler shaders.

A simple form of unique unwrapping almost unwraps every geometric primitive
(triangle, quad, grid, ...) individually. Once tessellation is commonly supported in
hardware this together with displacement maps or geometry images might be a good
solution [THC*04] [RECMULTI4E][LMHOQO]. It should be mentioned that this would allow
moving the indirection to the primitive to become more efficient.

2.3.6 Computing the Local LOD

2.3.6.1 How Much Tile Cache Memory is Required?

As mentioned in “mesh parameterization” when using a unique mapping the virtual
texturing method has a higher but more consistent memory demand in the texture
cache.

This is because non unique mappings allow sharing some tiles if the viewer is close to a
3D surface that shares the same area on the virtual texture. Assuming unique
unwrapping the memory required in the texture cache can be approximated by
multiplying the screen width and height with the average over-draw and a user defined
quality factor. The computation is only approximating the real value because it ignores
mip-mapping, anisotropy, bilinear filtering and waste because of tile borders. The
wasted memory becomes more when used with a bigger tile size as full tiles are
required even if only partly used. The pixel overdraw is O if that pixel is not using the
adaptive texture method and it’s greater than 1 if alpha blending is used.

Graphic cards normally compute the mip-map level depending of the screen texture
derivation in x and y for a two pixel block'®. For high anisotropy levels like for walls or
roads seen in the distance the mip-level for x and y can be quite different. Non
anisotropic filtered lookup on the graphic card here uses the maximum of the values

v Unique texture unwrapping: A position on the texture is only mapped to one model position; there is no
reuse of the texture.
'8 ddx() is computed from an odd/even horizontal pixels pair, ddy() from a vertical pair

46 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

and as a result the texture looks blurry but it benefits from good texture cache
coherence and has no shimmering in motion.

Figure 2. Different texture filtering techniques shown on rendering of a road section

In Figure a road is shown with different texture filtering modes. Starting from the left
you can see standard bilinear which only picks the lowest mip-map. The second image
shows the bilinear filtering without the use of mip-maps. That looks good on the
screenshot but in motion the noisy aliasing is very apparent. The following images show
2X, 4X and 8X anisotropic texture filtering. Note how the white stripes keep the details
in the distance depending on the anisotropic filtering level.

2.3.6.2 Computing Exact Local Tile LOD

With a high frame-rate on current hardware it’s usually not possible to get the local LOD
and the resulting update accomplished within the same frame. Then the perfect local
LOD would have to include future frames and that’s almost unsolvable for dynamic
scenes. We have to assume a latency of multiple frames and therefore it’s better to find
a more conservative LOD computation.

Occluded tiles can save tile cache space but those might become quickly visible. To find
the texture tiles that are hidden behind objects for many frames a high level streaming
prediction system based on some occlusion system (e.g. a static PVS) can help.

Rapid view direction changes are common in real-time games and it is important to
integrate in the local LOD computation.

2.3.6.3 Approximating Local Tile LOD

A reasonably conservative approximation can be acceptable and can sometimes even be
better than the exact LOD for the current frame. It's better to have tiles already
available to be prepared for quick camera angle changes or fast object movements.
Computing the LOD based on the distance per triangle or draw call can be such an
approximation (easy to implement for height-maps'®). For content that has a varying
world to Texel density the LOD computation can be extended further.

' Height-map rendering can make use of the virtual texture cache without any pixel shader indirection if
the mesh is organized in a similar quad-tree structure.

47 |Page

Chapter 2: Advanced Virtual Texture Topics

2.3.6.4 Exact Local Tile LOD in View Space with Occlusion

In [BARRETTO8] the author describes a method to compute the local LOD by rendering the
view as a pre-pass with some special shader that outputs the tile-id with the required
mip-map level. The resulting image is used to get the LOD required for some local area
of the virtual texture. It can be tricky to get the data back to the CPU efficiently and
some latency cannot be avoided. With a high frame-rate this can be multiple frames
and therefore the cause of artefacts. Hidden object parts that become visible (from
occlusion, animation or by entering the view) suffer from temporal local blurriness.

2.3.6.5 Exact Local Tile LOD in Texture Space

Most of the mentioned problems can be avoided when computations are performed in
texture space [LDNO4B]. Such methods even work outside of the view or when being
occluded by other objects or the object itself. The object needs to be rendered in
texture space using a medium resolution with a pixel shader computing the colour of
the Texel as LOD for the point in world space. Overlapping primitives in the texture
space require extra treatment which is of course not required when using a unique UV
unwrapping. The overlapping areas should get the colour value of the highest LOD
required there and luckily the z buffer can easily be abused for that.

Then the data can be extracted for different texture areas with Occlusion queries or
other methods like CPU read-back. This 2 pass algorithm allows multiple tests in
different areas of the quad-tree. As the returned information is changing slowly the
renderings can be distributed over multiple frames without introducing severe
problems.

We haven’t tried the GPU method; instead we implemented a CPU based method. It
was easier to implement (with some approximations) and doesn’t suffer from the
latency issues the GPU solution has. The idea here is to build up a quad tree in texture
space to compute distances to quad-tree nodes in world space. That can be CPU heavy
and memory intensive but it’s a good reference solution.

The described methods have quite some different properties and it depends on the
application and hardware platform which works best. The view space method with
occlusion only returns the minimal set of tiles required but it offers no good prediction.
Concerning prediction, the other two methods show their strengths and a combination
with one of them can be a good idea. Which one is the better choice depends on the
platform and on the data. Computing the local tile LOD per triangle is very bad with
huge triangles spanning multiple tiles. This can be solved by subdividing the mesh but
then the method becomes more complex and memory intensive.

48 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

2.4 Future Directions

Many interesting graphic algorithms rely on some form of LOD query and local texture
updates but the currently available hardware and API (DirectX®/OpenGL) is not
supporting this very well.

We [game developers] need asynchronous partial texture update and mip-level
adjustment with predictable performance. It seems we get virtualized memory for
graphic card memory which is nice from an OS perspective but for games we don’t want
stalling virtual memory. The application or the engine can deal with missing data on a
more high level and can provide fallbacks until the request is resolved. Whatever
methods are used and the described virtual texture method is just one, we need to be
able to deliver frame rate quality and see this as a valuable feature (Quality of Service).

2.5 Acknowledgements

This chapter wouldn’t be the same without the passionate work of the many
programmers, artist and designers at Crytek. Working there is both inspiration and
demanding as we take every good idea to the limit and challenge it against other
methods. Thanks to Efgeni Malachewitsch for the 3D model, Nick Kasyan, Anton
Kaplanyan, Michael Kopietz and all others that helped me with this text. Special thanks
to Natasha Tatarchuk, Kev Gee, Miguel Sainz, Yury Uralsky, Henry Morton, Carsten
Dachsbacher and the many others from the industry for the interesting discussions on
my favorite topic: Graphics

2.6 References

[ANDERSSONQ7] ANDERSSON, J. 2007. Terrain Rendering in Frostbite using Procedural
Shader Splatting, Advanced Real-Time Rendering in 3D Graphics and Game, Course
28, Siggraph 2007, San Diego, CA.
http://ati.amd.com/developer/gdc/2007/Andersson-
TerrainRendering(Siggraph07).pdf

[BAKEROS] BAKER, D. 2005. Advanced Lighting Techniques, Meltdown, Seattle 2005.
http://www.slideshare.net/mobius.cn/advanced-lighting-techniques-dan-baker-
meltdown-2005

[BARRETTO8] BARRETT, S. 2008. Sparse Virtual Texture Memory, Game Developer
Conference, San Francisco, CA. http://silverspaceship.com/src/svt

[BLoom0OO] BLoom, C. 2000. Terrain Texture Compositing by Blending in the Frame-
Buffer, http://cbloom.com/3d/techdocs/splatting.txt

49 |Page

Chapter 2: Advanced Virtual Texture Topics

[BRUNETONNEYRETO8] BRUNETON, E.AND NEYRET, F. 2008. Real-time rendering and editing of
vector-based terrains, In Proceedings of Eurographics 2008, Vol. 27, Num. 2,
http://www-evasion.imag.fr/Publications/2008/BN08/article.pdf

[CARRHARTO2] CARR, N. A. AND HART, J. C. 2002. Meshed Atlases for Real-Time Procedural
Solid Texturing, ACM Transactions on Graphics (TOG), , Vol. 21, No. 2, pp. 106 — 131,
http://graphics.cs.uiuc.edu/~nacarr/papers/rtpst.pdf

[DACHSBACHERO6] DACHSBACHER, C. 2006.Cached Procedural Textures for Terrain Rendering,
ShaderX*: Advanced Rendering Techniques, Engel, W. (Editor), Charles River Media,
Cambridge, MA.

[FFBGO1] FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG, D. P., 2001. Adaptive
Shadow Maps. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, pages 387-390

[GUANO7] GUAN, S.-H. 2007. Reyes and Shader Pipeline,
http://www.scribd.com/doc/7346/Reyes-and-Shader-Pipeline

[GLANVILLEO4] GLANVILLE, R. S.2004. Texture Bombing, in GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, Fernando, R. (Editor), Addison-
Wesley, April 2004.
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems ch20.html

[QMKO6] Qin, Z., McCool, M. D. AND Kaplan, C. S. 2006. Real-Time Texture-Mapped
Vector Glyphs, 13D '06: Proceedings of the 2006 symposium on Interactive 3D
graphics and games, pp. 125 - 132, Redwood City, CA.
http://www.cgl.uwaterloo.ca/~zqin/i3d2006/ft gateway.cfm

[LLoyDpO5] LLoYD, B., YOON, S., TuFT, D. AND MANOCHA, D. 2005. Subdivided Shadow Maps,
Technical Report TR05-024, University of North Carolina at Chapel Hill,
http://gamma.cs.unc.edu/ssm/ssm TR05-024.pdf

[LEFOHNO5] LEFOHN, A.2005. A Dynamic Adaptive Multi-resolution GPU Data Structure,
GPGPU: general-purpose computation on graphics hardware, Siggraph 2005
Courses, Los Angeles, CA, August 2005,
http://www.gpgpu.org/s2005/slides/lefohn.AdaptiveCaseStudy.ppt

[FARINO2] FARIN, G., FEMIANI, J., AND RAZDAN, A. 2002. Parametrizing Triangulated Meshes,
Seminar, PRISM RA, 2002.
http://prism.asu.edu/publications/pr list details.php?ref num=117

[IDTECH507] id Software Debuts id Tech 5 Press Release, 2007
http://www.idsoftware.com/business/press/index.php?date=200706
11000000

[NVIDIAO4] NVIDIA WHITEPAPER, 2004. Improve Batching Using Texture Atlases
http://developer.download.nvidia.com/SDK/9.5/Samples/DEMQS/Direct3D9/src/Ba
tchingViaTextureAtlases/AtlasCreationTool/Docs/Batching Via Texture Atlases.pdf

[EPHANOVO6] EPHANOV, A. AND COLEMAN, C. 2006. Virtual Texture: A Large Area Raster
Resource for the GPU, http://www.multigen-
paradigm.com/pdf content/2006IITSEC VTPaper 2.pdf

[LMHOO] Leg, A., MoReTON, H. AND Hoppg, H. 2000. Displaced subdivision surfaces, In
Proceedings of SIGGRAPH 2000, pp. 85-94, August 2000.
http://research.microsoft.com/~hoppe

50| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

[LHNO4] LEFEBVRE, S., HORNUS, S. AND NEYRET, F. 2004. All-Purpose Texture Sprites,
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5209.pdf

[LDNO4B] LEFEBVRE, S., DARBON, J. AND NEYRET, F., 2004. Unified Texture Management for
Arbitrary Meshes, Technical Report RR5210-, INRIA, Number RR5210, May 2004,
http://www-evasion.imag.fr/Publications/2004/LDN04/RR-5210.pdf

[LEFOHNO3] LEFOHN, A. 2003. Dynamic Volume Computation and Visualization on the GPU,
http://www.vis.uni-stuttgart.de/vis03 tutorial/lefohn.pdf

[NoGgucHIO8] NoGucHI, M. 2008. Running Halo 3 Without a Hard Drive, Presentation
http://www.bungie.net/images/Inside/publications/presentations/Loading done

gdc 2008.pptx

[THC*04] TARINI, M. HORMANN, K., CIGNONI, P. AND MONTANI, C. 2004. PolyCube-Maps, In
Proceedings of Siggraph 2004, pp. 853-860, Los Angeles, CA, 2004.
http://vcg.isti.cnr.it/polycubemaps/resources/sigg04.pdf

[WAVERENOG6B] J.M.P. vAN WAVEREN, 2006. Real-Time Texture Streaming &
Decompression, http://softwarecommunity.intel.com/articles/eng/1221.htm

[Wo0DARDO5] WOODARD, T. 2005. Real-time GPU-based texture Synthesis, In proceedings
of IMAGE 2005, http://www.diamondvisionics.com/docs/Real-time%20GPU-
based%20Texture%20Synthesis.pdf

51| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Chapter 3

March of the Froblins:

Simulation and Rendering Massive
Crowds of Intelligent and Detailed
Creatures on GPU

Jeremy Joshua Christopher Natalya
Shopf* Barczak’ Oat® Tatarchuk’

Game Computing Applications Group
AMD, Inc.

AMD 1

Figure 1. Froblins navigate to a mushroom patch goal and harvest food.

* jeremy.shopf@amd.com

> josh.barczak@amd.com

® chris.oat@amd.com

7 natalya.tatarchuk@amd.com

52| Page

Chapter 3: March of the Froblins

3.1 Beyond Pretty Pictures toward Intelligent Interactive Experiences

Artificial intelligence (Al) is generally considered to be one of the key components of a computer game.
Sometimes when we play a game, we may wish that the computer opponents were written better. At
those times while playing against the computer, we feel that the game is unbalanced. Perhaps the
computer player has been given different set of rules, or uses the same rules, but has more resources
(health, weapons, etc.). The complexity of underlying Al systems, along with game design, belies the
resulting feeling we have when playing any game. As the CPU and GPU speed and power continues to
grow, along with increasing memory amounts and bandwidth, game developers are constantly improving
the graphics of their games. In the last five years the production quality of games has been increasing
(along with the corresponding budgets). Recent games woo players with incredible breakthroughs in real-
time 3D graphics, complexity of the worlds and characters, as well as various post-processing effects. And
while there had been tremendous improvements for parallelizing rendering through the evolution of
consumer GPU pipelines, artificial intelligence computations are treading behind. To date, there had been
rather few attempts at parallelizing Al computations.

Typically, in a game, Al controls the behavior of non-player-characters (NPC), whether they are friendly to
the player or act as game opponents. This may include actual characters, or it can simply be tanks and
armies (such as in a real-time strategy game), or monsters in a first-person shooter. The uniform feeling is
the better the Al is, the better the game. A more sophisticated Al system allows for more interesting and
fun gameplay. Artificial intelligence is used for various parts of the game. Typical computations include
path finding, obstacle avoidance, and decisions making. These calculations are needed regardless of the
genre of interactive entertainment, be it a real-time strategy game, an MMORPG, or a first-person
shooter. We will also soon see dynamic character-centric entertainment in the form of interactive movies,
where the viewer will have control over the outcome.

In many scenarios, the Al computations include dynamic path finding. This involves auto-simulating
characters’ behavior, and/or running a terrain analysis to identify good or update valid paths as result of
gameplay. These computations can be quite a hog on CPU time budget, even in multi-core scenarios. As a
result, many game developers are looking for ways to minimize the CPU hit of pathfinding. Because path
finding and Al in general is such a compute-intensive, expensive calculation, we often see boring, zombie-
like NPC interaction. Furthermore, when gameplay and physics are simulated on the CPU, and the
characters are rendered on the GPU, there is an additional PCI-E data transfer overhead for character
positions and state. If we can utilize the GPU for running in-game Al code not only we can speed up path
finding, but we can also introduce a number of other interesting effects. Our characters can start living on
their own, resulting in so-called “emergent behaviors” — such as lane formation, queuing, and reactions to
other characters and so on. And this means that game play will be a lot more fun!

With this in mind, we set out to explore the next visual frontier for interactive experience, combining
massively parallel Al computations with high fidelity rendering algorithms. In this chapter we will describe
the simulation and rendering methods used for the AMD Froblins demo, designed to showcase many of
the new approaches for character-centric entertainment. These techniques are made possible by the
massively parallel compute available on the latest commodity GPUs, such as ATI Radeon® HD 4800 series.
In our fantasy large-scale environment with thousands of highly detailed, intelligent characters, the

53| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Froblins (frog goblins), are concurrently simulated, animated and rendered entirely on the GPU. The
individual character logic for each froblin creature is controlled via a complex shader (over 3200 shader
instructions). We are utilizing the latest functionality available with the DirectX® 10.1 API, hardware
tessellation, high fidelity rendering with 4X MSAA settings, at HD resolution with gamma-correct
rendering, full high dynamic range FP16 pipeline and advanced post-processing effects. The crowd
behavior simulation is performed directly on the GPU. We will describe a GPU-friendly path-planning
framework for large-scale crowd simulation. This framework can also be used to simulate larger crowds of
simplified agents with smaller polygonal count. Our system has been used to simulate 65,000 agents at
real-time frame rates on a single commodity GPU. By combining a continuum-based global path planner
with a fine-grained agent-based local avoidance model, we can perform expensive global planning at a
coarse resolution and lower update rate while the local model takes care of avoiding other agents and
nearby obstacles at a higher frequency. To our knowledge, this is the first massive crowd simulation
performed entirely on a GPU.

In our interactive environment we render thousands of animated intelligent characters from a variety of
viewpoints ranging from extreme close-ups (with individual characters rendered at over 1.6 million
triangles for close-up detail) to far away “bird’s eye” views of the entire system (over three thousands
characters at the same time). Our system combines state-of-the-art parallel artificial intelligence
computation for dynamic pathfinding and local avoidance on the GPU, massive crowd rendering with LOD
management with high end rendering capabilities such as GPU tessellation for high quality close-ups and
stable performance, terrain system, cascaded shadows for large-range environments, and an advanced
global illumination system. We are able to render our world at interactive rates (over 20 fps on ATI
Radeon® HD 4870) with staggering polygon count (6 — 8 million triangles on average at 20-25 fps), while
maintaining the full high quality lighting and shadowing solution.

3.2 Artificial Intelligence on GPU for Dynamic Pathfinding

3.2.1 Global Pathfinding

Many systems for crowd simulations rely on agent-based solutions, where the movement is computed for
individual agents separately. While there are certain advantages to this approach (independent decisions
for each agent, individual visibility and environment information), it is also challenging to develop
behavioral rules for the agents that result in a consistent and realistic overall crowd movement. At the
same time, scaling agent-based methods for a large number of agents is prohibitively computationally
expensive, which is a concern for interactive scenarios, such as video games.

For our crowd simulation solution we chose a continuum-based approach similar to the Continuum
Crowds work by Treuille et al. [TCP06]. This method converts motion planning into an optimization
problem, using well-known numerical methods from optics and general physics for stable navigation
solution.

This type of method is particularly well suited for simulating large numbers of agents because it is
computed spatially, instead of per-agent, and results in smooth movement with no “dead-ends”.
Additionally, a continuum approach results in flow-like movement which is characteristic of actual large

54| Page

Chapter 3: March of the Froblins

crowds. The global model is only an approximation to accurate long-term planning with full visibility and
decision logic, and therefore it is augmented by local collision avoidance problem. Together these
methods produce smooth and realistic crowd movement, especially in areas of dense congestion.

In this continuum-based crowd simulation, the environment is formulated as a cost function (sometimes
referred to as a speed function). This cost function incorporates both the achievable speed (based on
terrain slope, etc.) and avoidance factor (based on agent density, large-scale obstacles, etc.) for locations
in the environment. This cost function describes the travel-time to move from one location to a
neighboring location and is used to evaluate the optimal path.

This cost function is then used as input to a solver that calculates the total travel-time (potential) from
any location to the nearest goal. This potential (¢) is calculated such that it satisfies the eikonal equation:

Vo)l = F, (1)

where F is the positive-valued cost function evaluated in the direction of the gradient Vo (x). It is
intuitive to see how the function ¢ could be constructed by integrating the cost function along the
shortest-path from every location x. In this context, we can think of the global crowd movement as
computing a propagating wave front, following the path of least resistance.

Figure 2. Example of dynamic path finding in game-like scenario. The arrows visualize character
movement directions. As the large ghost Froblin scares away the little critters, they scamper away. Note
that the arrows near the “monster” are pointing away, directing the characters away from a potential
threat.

55| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

By following the gradient of the generated potential field, agents are guaranteed to always be moving
along the shortest path to the global goal considering the speed at which an agent can travel based on
terrain features, obstacles and agent density (congestion).

3.2.1.1 Global Pathfinding CPU Implementation

A fast and simple-to-understand computational algorithm to approximate the solution to the eikonal
equation is the Fast Marching Method [TsITsIKLIS95], which we will summarize here. Because the potential
is only known for the goal location, we begin by setting ¢ = 0 at the goal cell and adding this cell to a list
of KNOWN cells. All other cells are added to an UNKNOWN list, with their potential set to c. The algorithm
then proceeds as follows:

1) All UNKNOWN cells adjacent to a KNOWN cell are added to a NEIGHBOR list

2) The potential at each NEIGHBOR cell is calculated based on the potential at the neighboring
KNOWN cells and the cost to get from the KNOWN cells to the NEIGHBOR cell in question

3) Update the NEIGHBOR cell with the smallest potential found in step 2 and add it to the list of
KNOWN cells

4) Repeat until all cells are in the KNOWN list

Note that the above algorithm is identical to Dijkstra’s method. The difference between Dijkstra’s and the
Fast Marching Method is the way that the potential is calculated in step 2. Solving the continuous eikonal
equation by using Dijkstra’s method on a discrete grid will not converge; we will always get stair-stepping
artifacts regardless of the number of times you refine the grid structure.

[]
N
w M E®
()
S

Figure 3. lllustration of neighboring cells used in finite difference approximation.
Tsitsiklis presents a finite difference approximation to the continuous eikonal equation that eliminates

the stair-stepping problem. First, the upwind directions are identified as the least costly neighbors in the x
and y directions (see also Figure 3):

ny = argmingqy g{@; + Cy} ny, = argming v s{@; + Cu} (2)

The finite difference approximation is then computed using the greatest solution to ¢, in the quadratic

equation:
(o)’ y (2t oy

Cm Cm

56| Page

Chapter 3: March of the Froblins

In the case that nyor n, is undefined (neither neighbor along an axis is KNOWN), then eliminate the term
containing that axis from the equation. Once ¢yis found for all cells, the gradient Vo can be easily
calculated.

However, the Fast Marching Method is a serial algorithm and not amenable to parallelization, and, by
extension, not highly suitable for efficient GPU computation.

3.2.1.2 Global Pathfinding GPU Implementation

Luckily, there exists a method for solving the eikonal equation in parallel. The Fast Iterative Method
[JEONGWHITAKERO7A; JEONGWHITAKERO7B] uses the same upwind finite difference approximation described
in Section 3.2.1.1 but requires no ordered data structures to maintain lists such as KNOWN, UNKOWN, etc.
The idea is to only perform updates to the potential function at the band of cells which are active. In
practice, a list of individual active cells does not need to be maintained. A list of active tiles, or spatially
coherent blocks of cells, is maintained. Intuitively, the list of active tiles is initialized to contain the tile
containing the source (the goal in our application). We summarize the algorithm as follows:

1) Iterate ntimes on all cells in the active tiles;

2) Compare each cell in each active tile to the previously computed potential value for that cell. If
the difference is within some small threshold, mark it as converged ;

3) For each active tile, perform a reduction on the convergence results to determine if the entire
tile is converged;

4) Perform one iteration on all tiles neighboring the tiles determined to have converged in step 3
to see if any cell values change;

5) Update the active list of tiles to reflect all tiles that became inactive due to convergence or
that were identified as being reactivated in step 4.

The authors reported 4-6X performance improvements over optimized CPU implementations for their
tile-based implementation.

However, for our implementation, we are able to further simplify this algorithm because the complexity
of our cost function does not vary greatly and our cell grids are small relative to the large datasets used in
the authors” work.

Because our datasets are small (128 or 256°), the constant overhead of performing tests for convergence
outweighs the gains from culling computation and impacts performance negatively. In other aspects, our
algorithm is similar to the above. In order to ensure that our solver converges, we need to be able to
make a conservative estimate of the number of iterations needed. The number of iterations used in our
solver was determined empirically by examining worst-case cost function complexity.

By calculating four eikonal solutions at once, we are able to achieve 98% ALU utilization on an ATI
Radeon™ HD 4870 with GDDR5 memory. This yields very high computational throughput. Our GPU based
solver computes a 256° solution in 20 ms which is faster than our CPU implementation by a factor of
approximately 45. The performance data was collected on an AMD Phenom™ X4 Quad-Core CPU system

57| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

with 2GB of RAM and an ATl Radeon™ 4870 graphics card with 512MB of GDDR5 video memory and
regular engine and memory clocks. HLSL source code for our iterative eikonal solver is listed in Appendix
A.

3.2.1.3 Constructing the Cost Function

Solving the eikonal equation requires a cost function that can be evaluated at each grid cell. The cost
function for the environment in the Froblins demo is computed as follows:

F(x) = aT(x) + bD(x) + cA(x), (4)

where F'is the final cost function, 7 is the static movement cost (including terrain movement cost
equivalent to slope as well as any large static objects such as buildings), Dis the density of agents and A s
the cost related to dynamic hazards. a, b, and c are weights that can be adjusted spatially to encourage
different pathing depending on the situation. For example, it may be desired to increase the cost due to
agent density near a goal to prevent overcrowding at goals.

Once the scalar cost function F(x) is constructed (Figure 4), it can be supplied to the eikonal solver to
calculate ¢ (x). The gradient of ¢ (x) is calculated using central differences.

Figure 4. Left to Right: Cost function, potential, gradient of potential. The goals (sources) are at the center
of the blue marker.

3.2.2 Local Navigation and Avoidance

Unfortunately, solving the eikonal equation at a resolution high enough for large numbers of agents to
avoid each other with acceptable fidelity is prohibitively expensive for a real-time application. In order to
have an accurate behavior model for our characters, we augment our global eikonal solution with a local
avoidance model that resolves these fine-grained obstacles.

The basic goal of a local model is to provide each individual agent with a velocity that will prevent
collisions with nearby agents and also to navigate around obstacles and agents towards its desired

58| Page

Chapter 3: March of the Froblins

destination. This is typically handled by a continuous cycle of examining the nearby environment and
reacting based on the discovered information.

3.2.2.1 Method

Our local navigation and avoidance model computes agent velocities by examining the movement
direction determined by the global model and the positions and velocities of nearby agents. This
avoidance model is based on the Velocity Obstacle formulation [FIORINISHILLER98; vBPS*08].

For our model, we present each agent as a disc. Each agent A; therefore has a position pi, a velocity v, a
radius 1; @ maximum speed s, and a global goal direction g; provided by the global solver. We infer an
orientation 0; from vi by assuming that the agent is oriented towards vi. In our application, all agents have
a similar radius and therefore ris constant for all agents.

As in most local models, updating pi and vi for A; requires knowledge of the pn and vy, for all agents A, €
Anear, Where Apear is the set of all agents within a certain distance.

3.2.2.2 Spatial Queries via Novel GPU Binning

Determining the positions and velocities of dynamic local obstacles requires a spatial data structure
containing all obstacle information in the simulation. We developed a novel multi-pass algorithm for
sorting agents into spatial bins directly on GPU. Our algorithm uses a 2D depth texture array and a single
2D color buffer to construct a data structure for storing agents in bins. The depth texture array serves as
our Agent ID Array. A given 2D texel address in this array serves as a bin. A single bin is a 1D array texture
array slice. The bin array grows down through successive texture array slices. Each slice of the texture
array contains a single agent ID (bin element). The agent IDs are stored in bins in ascending sorted order
by agent ID. The number of agents that fall into a given bin may be less than the bin capacity (which is
defined by the number of depth array slices). In order to efficiently query the agent IDs in a given bin we
use a Bin Counter. The Bin Counter is a 2D color buffer that records the load on each bin in the Agent ID
Array.

To find all agents near a particular world space position, the position is translated into a 2D bin address.
Any translation function may be used. Our world domain is square so a simple uniform grid was used to
map world space positions to bins. Once the bin address is known, the bin load is read from the Bin
Counter. This gives us the number of agents that are in the bin we are interested in. Finally, the each
agent’s ID in the bin is read from the Agent ID array.

This data structure must be updated each frame as agents move about the world. Updates are
performed using an iterative algorithm that begins with all agent IDs in a buffer called the working set.
Each iteration, as agents are placed into bins, they are removed from the working set. The algorithm
continues to iterate until the working set is reduced to zero.

59| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

=
O
2>

Q
<

1>
(@]
®

Agent Positions Bin Counter

‘l..,,gli.:,’

o
(‘.’.‘1}
)
|
||||||||||||’|I|w

%
!

Rasterize Point Prims
—

&)
)

(
||..~'l|
L

g
Ca

(

mum-:llm
)
)

@)
)
h
h
gy
!
"."'n.

(

/
\
iy

)
o)

)
N
‘1‘

(

Figure 5. Agent positions are rasterized into a bin counter and an array containing IDs of agents in that
bin. These IDs are later used to retrieve agent positions and velocities.

We begin by clearing the Bin Counters to 0 to indicate that the bins are empty and all slices of the Agent
ID Array are cleared to 1.0. For the first iteration, the top-most slice of the Agent ID Array is bound as the
current depth buffer and the Bin Counter is bound as the current color target. The working set,
containing all agent IDs, is bound as the input vertex buffer and each element is rasterized as a single
point primitive. As each point passes through the vertex shader, the point’s screen space position is set
by mapping the associated agent’s world position to a bin address as mentioned above. The normalized
agent ID is stored as the point’s depth value. The GPU’s depth-test unit is configured to pass fragments
that are less than the depth value stored in the depth buffer. As a result, of all the agents that map to a
given bin, only the agent with the lowest ID (corresponding to the point with the lowest depth value) will
be drawn into that bin. Since we can only write a single agent to a given bin per iteration, the pixel
shader simply outputs 1 resulting in the bin counter being set to 1 at bins that received an agent. Bins that
did not receive any agents will remain set to their initial cleared value of 0. If multiple agents map to a
single bin, the agent with the lowest ID will get written and other agents will be rejected to be processed
on a subsequent pass.

For the second iteration of the algorithm, the second slice of the Agent ID Array is set as the current
depth target and the agents are processed once again. No agents were removed from the working set on
the first pass so the second iteration once again takes as input a working set containing all agents. This
time the vertex shader does some additional work, it rejects the current point primitive if its agent ID is
less than or equal to the ID stored in the previous Agent ID Array slice. Points are marked as “rejected” by
setting their depth value to some value outside of the valid depth range. The depth unit is still configured
to less than function, so, much like depth-peeling [EVERITTO1], we are effectively implementing a dual
depth buffer which results in the point with the lowest ID that is greater than the previously binned ID to
pass. Performing the “greater than” test in the vertex shader rather than the pixel shader allows us to
avoid inserting clip/kill instructions in our pixel shader and allows the GPU to perform early-z culling.

After vertex shading, points are passed to a geometry shader. The geometry shader tests the point’s
depth value and only allows non-rejected points to both be sent to the rasterizer and to be streamed out.
Points that are marked for rejection are simply discarded; not rasterized and not streamed out. The pixel
shader is set to output 2 so that the Bin Counter will be set to 2 at locations where points are written. At
the end of this pass, the resulting stream-out buffer will contain all the agents that were binned during
this iteration along with all the agents that have not yet been binned. The stream-out buffer will not

60| Page

Chapter 3: March of the Froblins

contain agents that were binned in the previous iteration since they will have been marked for rejection
during the vertex shader’s “greater than” test and thus will not have been streamed out in the geometry
shader. This stream-out buffer becomes the new working set and is used as input for subsequent
iterations of the algorithm.

Subsequent passes follow much like the second iteration of the algorithm. Each time: the depth target is
set to the next slice of the agent ID array, the pixel shader is set to output current iteration number, and a
new working set is created for use in the next pass. Each iteration results in a reduced working set. The
algorithm continues to iterate until the working set is reduced to zero. An overflow condition occurs if
the iteration count reaches or exceeds the Agent ID Array depth before the working set is reduced to
zero. This can occur if too many agents land in a given bin but in practice overflow can be prevented by
using a large enough number of bins so that agents are sufficiently distributed to avoid overflow. Also,
the depth of the Agent ID Array can be increased to accommodate higher bin loads.

A ping-ponging technique is used to manage the working set buffers. The “ping” buffer contains the
current working set and acts as input during one iteration while the “pong” buffer acts as the output
buffer. The roles of the ping and pong buffers are swapped after each iteration.

Two techniques are used to avoid CPU/GPU synchronizations that would result in rendering pipeline
stalls. Predicated rendering feature of Direct3D® 10 is used to control the execution of each iteration.
Ideally the algorithm should only continue to iterate as long as the previous iteration resulted in a stream-
out buffer with non-zero length. Unfortunately if we were to control execution on the CPU by issuing
GPU queries after each pass to determine if the algorithm had completed, we would introduce stalls in
the rendering pipeline due to CPU/GPU synchronization and this would degrade performance.

To avoid synchronization stalls, all the draw calls for the maximum number of iterations (corresponding to
the maximum allowable bin load) are made up front. We still want the algorithm to terminate once all
agents have been binned so we use predicated draw calls to terminate upon completion. The draw calls
for each iteration are predicated on the condition that the previous iteration resulted in agents being
streamed out. If no agents are streamed out then we know the working set has been reduced to zero and
we can terminate. Using cascading predicated draw calls in this way will result in the remaining draw calls
being skipped. Thus the GPU takes full responsibility for terminating the algorithm once all the agents
have been binned. The Direct3D® 10 DrawAuto call is used to issue each predicated draw since we do
not know the size of the working set from iteration to iteration.

Our spatial data structure provides some benefits over previous techniques [HARADAO7]. Querying our
data structure is efficient because we store bin loads in a Bin Counter thus allowing us to only read the
necessary number of elements from the Agent ID Array and even early-out when a bin is determined to
be empty. Additionally our technique provides a mechanism for detecting overflow, employs iterative
stream-out reduction of the working set, and gives execution control to the GPU to avoid pipeline stalls.

6l|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.2.2.3 Agent Movement Direction Determination

Agent’s directions need to change as a result of pathfinding and local avoidance models’ computations.
Each agent evaluates a number of fixed directions relative to the goal direction determined by the global
solution. We used five directions in our application. More can be used for increased motion fidelity. The
suitable number of directions for our application was determined empirically by evaluating desired
motion fidelity versus performance overhead for computing more directions. Each direction is evaluated
to determine the time to collision with agents in the current or adjacent bins. Each direction is given a
fitness function based on the angle relative to the desired global direction and the time to collision. Time
to collision is determined by evaluating a swept circle-circle collision test, in which the radius of each
circle is equal to the disc radius r of the agents.

The updated velocity (Equation 7) is then calculated based on the direction with the largest fitness
function result (Equation 6) and the smallest time to collision in that direction.

fitness(vp;) = w;t(vp;) + (g; -vp;).5+ .5 (5)

v; = argmax fitness(vp;) (6)
vpieV

Vfinal = ﬁlmin(Sa» Sat(D,)/Vft) (7)

where w; is a per-agent factor affecting the preference to move in the global direction or avoid nearby
agents, t(x) returns the minimum time to collision with all agents in direction x, V is the set of discrete

directions to evaluate, g; is the global navigation direction, s, is the speed of agent a, and Vft is the
time-delta since the last simulation frame.

™ u:n \ 7 TN A '
v N A | ~! yi N\ | o
/4 \ |/ N [\ 1 A
[|| A i [17 ™\ —~
\ ar 9 . d \ Jif AY &£ U
A $Z2 TR Nl] oo
\ \ /
v\ N
A4 A

|

|

_

Figure 6. Each agent evaluates a fixed number of potential movement directions based on the positions
and velocities of agents in its current and adjacent bins. Two agents and their corresponding V sets are
shown.

Two example sets of directions to be evaluated for velocity update are shown in Figure 6. Note that the
two sets are identical in the local coordinate frame defined by the agent and its global navigation
direction g;. We have also chosen to evaluate only directions that would cause a “right turn” change in

62| Page

Chapter 3: March of the Froblins

orientation. This eliminates the need to arbitrate which direction an agent should turn based on the
velocities of other agents and also results in fewer collision tests. In practice, this limitation is not very
noticeable or distracting.

It is important to note that we employ a simple kinodynamic constraint to restrict an agent’s change in
velocity. It is desired to throttle the change in orientation in a given time step because our agents have a
physical limit to how fast they can change their orientations. This prevents sudden broad changes in
orientation in dense agent situations.

3.2.3 Agent State Management

As agent navigate around the environment, it is important to maintain information about their current
state. This includes data such as current position and velocity, current group ID, current animation cycle
(or action) and current time within that animation cycle. We also maintain per-agent data such as
maximum speed and goal achievement distance. Goal achievement distance is a random value is used to
determine the distance from the goal at which an agent has reached that goal. This is rather specific to
our specific goal types such as mushroom and gold patches where the goal has a specific area and the
boundaries are nebulous.

Agent animation cycle transitions are performed using dynamic flow control within the shader controlling
agent update logic. If the current time within an animation cycle is greater than the length of the current
animation, several conditions are checked to determine what animation cycle should be part of the
agent’s state. These are: current animation cycle, distance from nearest goal, number of agents nearby,
distance from fear inducing obstacles such as the ghost froblin and noxious gas clouds, and current group.
While these agent updates will not be very coherent, the agent data texture is very small and the
performance impact is slight. Despite the dimensionality of input to the animation transition function, it
may be possible to precompute the animation transition logic into textures (as done in [MHRO7]) and
eliminate flow control.

3.2.4 Pathfinding Results Discussion

Our approach has been used to simulate ~65,000 agents at interactive rates on an ATl Radeon™ HD 4870
while performing intensive rendering tasks such as multi-million triangle scene rendering, global
illumination approximation, atmospheric scattering, and high-quality cascaded shadow mapping. All
results were collected on an AMD Phenom™ X4 Quad-Core CPU system with 2GB of RAM and an ATI
Radeon™ 4870 graphics card with 512MB of GDDR5 video memory and standard engine and memory
clocks. The main bottleneck in our application is rendering a massive number of agents. In the case of
simulating 65K agents, we use a simplified agent model (a cylinder). Simulation (global and local) alone for
65K agents on the above system is 45 fps. Simulation of crowd behavior and interaction along with
rendering for this large number of agents is 31 fps. Note that even with using a very simple cylinder
model, due to extremely large number of agents, we are rendering 9.8M triangles in the latter case. All of
our testing results were collected rendered at HD resolution with 4X MSAA.

63| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

While we chose to use the two crowd behavior simulation techniques for our global and local navigation,
they also can be used separately as they each have their own advantages and disadvantages.

The continuum approach used for our global solver works well in the Froblins scenario where there are
large numbers of agents with only a few types of goals. More complex scenarios with diverse tasks are
likely to be incompatible with this type of approach. Another disadvantage of using a continuum
approach is that all agents are modeled as having global knowledge. An agent will make navigation
choices based on obstacles that are not visible to it, which may also not be desired. We feel that the
continuum approach would be excellent for ambient crowds. That is, large groups of non-player
characters which are present mostly for scenery but are expected to navigate around a dynamic
environment or moving characters.

The local model also has disadvantages. By limiting local avoidance velocities to be of a clockwise nature,
the variation in agent interaction is somewhat limited. Using a small discrete set of local directions for
navigation can also lead to oscillation between two directions, creating distracting behavior. While the
local avoidance model will prevent collisions in very densely packed situations, scenarios arise where
agents can deadlock and will become stuck. This typically happens at sinks in agent navigations such as at
a small goal. Once agents become densely packed around a goal, agents that reach the goal will be unable
to navigate out of the goal area. This could be solved by incorporating varying levels of aggressive
behavior into agent movement that causes agents to push each other out of the way. This type of
approach could be augmented by a composite agent approach [YCP*08] to “trail-blaze” paths through
densely packed agents.

3.3 Character LOD Management

The overarching goal of our system is simulation and rendering of massive crowds of characters with high
level of detail. The latest generations of commodity GPUs demonstrate incredible increases in geometry
performance, especially with the inclusion of GPU tessellation pipeline (Section 3.5). Nevertheless, even
with state-of-the-art graphics hardware, rendering multiple thousands of complex characters with high
polygonal counts at interactive rates is very taxing. Rendering thousands of characters with over a million
of polygons each is neither practical, nor wise, as in many cases these characters may be very small on the
screen and therefore performance is wasted on the details that go unnoticed. For this reason it is
essential to use culling and level of detail (LOD) techniques in order to make this rendering problem
tractable.

Culling and LOD management have traditionally been CPU-centric tasks, trading a modest amount of CPU
overhead for a much larger reduction in the GPU workload. However, a common difficulty arises when
the positional data is generated by a GPU-based simulation, and, therefore, would require a costly read-
back operation for CPU-side scene management. This is exactly the situation we’ve encountered, as we
simulated and animated our characters entirely on the GPU.

The alternative is to use the available compute to perform all culling and scene management directly on
the GPU. In our Froblins demo, we solve this problem by employing Direct3D® 10 geometry shaders in a

64| Page

Chapter 3: March of the Froblins

novel way to perform character culling and LOD sorting entirely on the GPU. This enables us to perform
these tasks efficiently for GPU-simulated characters. The underlying ideas could also be applied with a
CPU simulation, in order to offload the scene management from the CPU.

3.3.1 Using Stream-Out Operations as Filtering

Our system takes advantage of instancing support available with Direct3D® 10 and Direct3D® 10.1 API.
We render an army of characters as varied instanced characters, with individual actions and animations
controlled on the GPU. This naturally leads to the key idea behind our scene management approach: the
use of geometry shaders that act as filters for a set of character instances. A filtering shader works by
taking a set of point primitives as input, where each point contains the per-instance data needed to
render a given character (position, orientation, and animation state). The filtering shader re-emits only
those points which pass a particular test, while discarding the rest. The emitted points are streamed into
a buffer which can then be re-bound as instance data and used to render the characters. Multiple
filtering passes can be chained together by using successive DrawAuto calls, and different tests can be set
up simply by using different shaders.

In practice, we use a shared geometry shader to perform the actual filtering, and perform the different
filtering tests in vertex shaders. Aside from providing more modular code, this approach can also provide
performance benefits. The source to this filtering geometry shader is shown in Listing 1.

struct GSInput

{
// ¥X,Y¥,Z contain the character’s origin in world space
// W contains a group number, which is used to vary character appearance
float4 vPositionAndGroup : PositionAndGroup;

// ¥X,Y contain the character orientation (a vector in the X/Z plane)
// 7 contains the index of the character’s animation cycle
// W contains the time along the cycle (see section 3.5)

float4 vDirection : DirectionStateAndTime;
// Result of predicate test: 1 == emit, 0 == do not emit
float fResult : TestResult;

bi

struct GSOutput

{
float4 vPositionAndGroup : PositionAndGroup;
float4 vDirection : DirectionStateAndTime;

}i

[maxvertexcount (1)]
void main(point GSInput vert[l], inout PointStream<GSOutput> outputStream)
{

[branch]
if (vert[0].fResult == 1)
{

GSOutput o;

o.vPositionAndGroup = vert[0].vPositionAndGroup;
o.vDirection = vert[0] .vDirection;
outputStream.Append(o);

}

Listing 1. A stream-filtering geometry shader

65| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.3.2 View-Frustum Culling

It is straightforward to perform view frustum culling using a filtering geometry shader, as described
above. For view-frustum culling, the vertex shader simply performs an intersection check between the
character bounding volume and the view frustum, using the usual algorithms (for example, [AHHO08]). If
the test passes, then the corresponding character is visible, and its instance data is emitted from the
geometry shader and streamed out. Otherwise, it is discarded. An example of a culling vertex shader is
given in Listing 2.

struct VSInput
{

float4 vPositionAndGroup : PositionAndGroup;

float4 vDirectionStateAndTime : DirectionStateAndTime
bi

struct VSOutput

{
float4 vPositionAndGroup : PositionAndGroup;
float4 vDirection : DirectionStateAndTime;
float fVisible : TestResult;

bi

// Computes signed distance between a point and a plane
// vPlane: Contains plane coefficients (a,b,c,d) where: ax + by + cz = d
// vPoint: Point to be tested against the plane.
float DistanceToPlane(float4 vPlane, float3 vPoint)
{
return dot(float4(vPoint, -1), vPlane);

}

// Frustum cullling on a sphere. Returns 1 if visible, 0 otherwise
float CullSphere(float4 vPlanes[6], float3 vCenter, float fRadius)
{
for(uint i=0; i<6; i++)
{
// entire sphere is outside one of the six planes, cull immediately
if (DistanceToPlane(vPlanes[i], vCenter) > fRadius)

return 0;
}
return 1;
}
float4 vFrustumPlanes([6]; // view-frustum planes in world space (normals face out)
float3 vSphereCenter; // bounding sphere center, relative to character origin
float fSphereRadius; // bounding sphere radius

VSOutput VS(VSInput i)
{
// compute bounding sphere center in world space
float3 vObjectPosWS = i.vPositionAndGroup.xyz;
float3 vSphereCenterWS = vBoundingSphereCenter.xyz + vObjectPosWS;

// perform view-frustum test
float fVisible = CullSphere(vFrustumPlanes, vSphereCenterWS, fSphereRadius);

VSOutput o;

o.vPositionAndGroup = i.vPositionAndGroup;
o.vDirectionStateAndTime = i.vDirectionStateAndTime;
o.fVisible = fVisible;

return o;

}

Listing 2. Vertex shader for view-frustum culling

66 | Page

Chapter 3: March of the Froblins
3.3.3 Occlusion Culling

We can also perform occlusion culling in this framework, to avoid rendering characters which are
completely occluded by mountains or structures. Because we are performing our character management
on the GPU, we are able to perform occlusion culling in a novel way, by taking advantage of the depth
information that exists in the hardware Z buffer. This approach requires far less CPU overhead than an
approach based on predicated rendering or occlusion queries, while still allowing culling against arbitrary,
dynamic occluders. Our approach is similar in spirit to the hierarchical Z testing that is implemented in
modern GPUs, and was inspired by the work of [GKM93], who used a hierarchical depth image combined
with an octree to cull occluded geometry in bulk.

After rendering all of the occluders in the scene, we construct a hierarchical depth image from the Z
buffer, which we will refer to as a Hi-Z map. The Hi-Z map is a mip-mapped, screen-resolution image,
where each texel in mip level i contains the maximum depth of all corresponding texels in mip level i-1. In
the most detailed mip level, each texel simply contains the corresponding depth value from the Z buffer.
This depth information can be collected during the main rendering pass for the occluding objects; a
separate depth pass is not required to build the Hi-Z map.

After construction of the Hi-Z map, occlusion culling can be performed by examining the depth
information for pixels which are covered by an object’s bounding sphere, and comparing the maximum
fetched depth to the projected depth of a point on the sphere that is nearest to the camera. Although
this approach does not provide an exact occlusion test, it gives a conservative estimate that works well in
many cases, and will never result in false culling.

3.3.3.1 Hi-Z Map Construction

For single-sample rendering, one can use the Hi-Z map as the main depth buffer for rendering the scene
(using a DepthStencil view of the first mip level). In Direct3D® 10.1, multi-sampled depth buffers can also
be supported, with an extra full-screen quad pass, by first computing the maximum depth of each pixel’s
sub-samples and storing the result in the lowest level of the Hi-Z map.

Subsequent levels are generated using a sequence of reduction passes, which repeatedly fetch texels and
compute their maximum, as shown in Listing 3. Because screen-sized images typically do not mip well,
care must be taken when reducing odd-sized mip levels. In this case, the pixels on the odd-sized
boundary edge must fetch additional texels to ensure that their depth values are taken into account. In
addition, it is necessary to use integer calculations for the texture address arithmetic, because floating-
point error can result in incorrect addressing when rendering into the lower mip levels.

Each of the reduction passes renders into one mip level of the Hi-Z map resource, while sampling from
the previous one. This is valid approach in Direct3D® 10, as long as the resource view used for the input
mip level does not overlap the one being used for output (different input and output views must be
created for each pass).

67| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

struct PSInput

{
// Fractional pixel coordinates (0.5, 1.5, 2.5, etc..)
float4 vPositionSS : SV_POSITION;

// Dimensions of ‘tCurrentMip’.
// Can be obtained by calling ‘GetDimensions’ in the vertex shader.
nointerpolation uint2 vLastMipSize : DIMENSION;

}i

Texture2D<float> tCurrentMip;
sampler sPoint;

float4 main(PSInput i) : SV_TARGET

{
// get integer pixel coordinates
uint3 nCoords = uint3(i.vPositionSS.xy, 0);
uint2 vLastMipSize = i.vLastMipSize;

// fetch a 2x2 neighborhood and compute the max
nCoords.xy *= 2;

float4 vTexels;

vTexels.x = tCurrentMip.Load(nCoords);

(
vTexels.y = tCurrentMip.Load(nCoords, uint2(1,0));
vTexels.z = tCurrentMip.Load(nCoords, uint2(0,1));
vTexels.w = tCurrentMip.Load(nCoords, uint2(1,1));
float fM = max(max(vTexels.x, vTexels.y), max(vTexels.z,vTexels.w));

// 1f we are reducing an odd-sized texture,
// then the edge pixels need to fetch additional texels
float2 vExtra;
if((vLastMipSize.x & 1) && nCoords.x == vLastMipSize.x-3)
{
vExtra.x = tCurrentMip.Load(nCoords, uint2(2,0));
vExtra.y = tCurrentMip.Load(nCoords, uint2(2,1));
fM = max(fM, max(vExtra.x, vExtra.y));

if((vLastMipSize.y & 1) && nCoords.y == vlLastMipSize.y-3)
vExtra.x = tCurrentMip.Load(nCoords, uint2(0,2));

vExtra.y = tCurrentMip.Load(nCoords, uint2(1,2));
fM = max(fM, max(vExtra.x, vExtra.y));

// extreme case: If both edges are odd, fetch the bottom-right corner texel
if(((vLastMipSize.x & 1) && (vLastMipSize.y & 1)) &&
nCoords.x == vlLastMipSize.x-3 && nCoords.y == vlLastMipSize.y-3)

{
fM = max(fM, tCurrentMip.Load(nCoords, uint2(2,2)));

}

return fM;

Listing 3. Pixel shader used for Hi-Z map construction

3.3.3.2 Culling with the Hi-Z Map

Once we have constructed the Hi-Z map, we perform another stream filtering pass which uses this
information to perform occlusion culling. In order to ensure a stable frame rate, it is desirable to restrict
the number of fetches that are performed for each character, and to avoid divergent flow control

68| Page

Chapter 3: March of the Froblins

between character instances. We can accomplish this goal by exploiting the hierarchical structure of the
Hi-Z map.

We first compute the bounding square in image space which fully encloses the character’s projected
bounding sphere. We then select a specific mip level in the Hi-Z map at which the square will cover no
more than one 2x2 texel neighborhood. This 2x2 neighborhood is then fetched from the map, and the
depth values are compared against the projected depth of a point on the bounding sphere that is nearest
to the camera. The structure of the Hi-Z map guarantees that if any of these texels occludes the object,
then all texels beneath it will also occlude. Although we have chosen to use a 2x2 neighborhood, a larger
one could be used instead, and would provide more effective culling at the expense of added overhead in
the culling test.

To obtain the closest point on the bounding sphere, one can simply use the following formula:

Pv=Cv—(|E—zl)r (8)

Here, Py is the closest point in camera space, Cy is the sphere center in camera space, and ris the sphere
radius. The projected depth of this point will be used for the depth comparisons ahead. Note that if the
camera is inside the bounding sphere, this formula will result in a point behind the near plane, whose
projected depth is not well defined. In this case, we must refrain from culling the character to prevent a
false occlusion.

To compute the character’s bounding square, we first calculate its projected height in screen space based

on its distance from the image plane. Note that we define screen space as the space obtained after

perspective projection. The height in screen space is given by:

h=—"
dtan(?)

(9)

where dis the distance from the sphere center to the image plane and @is the vertical field of view of the
camera. The width of the bounding square is equal to this height divided by the aspect ratio of the back
buffer. The size of the square in screen space is equal to twice its size in NDC space (which is a normalized
space starting at the top-left corner of the screen). Note also that, for non-square resolutions, a square
on the screen is actually a rectangle in screen space and NDC space.

When sampling the Hi-Z map, we would like to fetch from the lowest level in which the bounding square
covers at most four texels. This will allow us to use a fixed number of fetches to reject any square, no
matter its size. To choose the level, we need only ensure that the size of the square is smaller than the
size of a single texel at the chosen resolution. In other words, we choose the lowest level i such that:

(g) <1 (10)
where the width of the rectangle in pixels is W. This yields the following equation for i:

69| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

i = [log,(W)] (11)
This holds, provided that the width of the rectangle in pixels is larger than the height. If this is not the
case, the height in pixels should be used instead. This will happen whenever the aspect ratio is less than
one.

Once we have chosen the correct mip level, we perform a texture fetch from the Hi-Z map at each corner
of the bounding square, compute the maximum fetched value, and compare it with the depth of the
depth of the point P,.

HLSL code for occlusion culling is given in Listing 4. The vertex shader shown in the listing is used together
with a filtering geometry shader (Listing 1) to filter out character instances which are occluded by other
scene elements. Remember that this calculation is only performed once per character, not once per
rendered vertex.

3.3.4 LOD Selection

Given the above, LOD selection is also simple to implement. We use a discrete LOD scheme, in which a
different level of detail is selected based on the distance from the camera to the character’s center. This
is implemented by using three successive filtering passes to separate the characters into three disjoint
sets, based on their distances to the camera. These filtering passes are applied to the results of the
culling steps, so that only visible characters are processed. The culling results are computed once, and re-
used for the LOD selection passes. We render the characters in the finest (closest) LOD using hardware
tessellation and displacement mapping (see section 3.5), and use conventional rendering for the middle
LOD, and simplified geometry and pixel shaders for the furthest LOD.

70| Page

Chapter 3: March of the Froblins

floatd4x4 mv; // Viewing transform

float4x4 mP; // Projection transform

float3 vCameraPosition; // Camera location in world space

float fCameraFOV; // Camera's vertical field of view angle

float fCameraAspect; // Camera aspect ratio

float4 vSphere; // Bounding sphere center (XYZ) and radius (W), object space
float4 vViewport; // ¥X,Y,Width,Height

Texture2D<float> tHiZMap;

sampler sHiZPoint;

struct VSInput

{
float4 vPositionAndGroup : PositionAndGroup;
float4 vDirection : DirectionStateAndTime;

}i

struct VSOutput

{
float4 vPositionAndGroup : PositionAndGroup;
float4 vDirection : DirectionStateAndTime;
float fVisible : IsVisible;

}i

VSOutput VS (VSInput i)

{

VSOutput o;

o.vPositionAndGroup = i.vPositionAndGroup;
o.vDirection.xyzw = i.vDirection.xyzw;
o.fVisible =1

// compute bounding sphere center in camera space
float3 vAgentCenterWS = vSphere.xyz + i.vPositionAndGroup.xyz;
float3 Cv = mul(mV, float4(vAgentCenterWS.xyz, 1)).xyz;

// Do not cull agents if the camera is inside their bounding sphere
if(length(Cv) > vSphere.w)
{
// compute nearest point to camera on sphere, and project it
float3 Pv = Cv - normalize(Cv) * vSphere.w;
float4 vPositionSS = mul (mP, float4d (Pv,1));

// compute radii of bounding rectangle in screen space (2x the radii in NDC)
float fRadiusY = vSphere.w / (Cv.z * tan(fCameraFOV / 2));
float fRadiusX = fRadiusY / fCameraAspect;

// compute UVs for corners of projected bounding square

float2 vCornerNDC = vPositionSS.xy / vPositionSS.w;
vCornerNDC = float2(0.5,-0.5)* vCornerNDC + float2(0.5, 0.5);
vCornerNDC -= 0.5 * float2(fRadiusX, fRadiusY);

float2 vCorner0 = vCornerNDC;

float2 vCornerl = vCornerNDC + float2(fRadiusX, 0);

float2 vCorner2 = vCornerNDC + float2(0, fRadiusyY) ;

float2 vCorner3 = vCornerNDC + float2(fRadiusX, fRadiusY);

// Choose a MIP level in the HiZ map (assume that width > height)
float W = fRadiusX * vViewport.z;
float fLOD = ceil(log2(W)) ;

// fetch depth samples at the corners of the square to compare against
float4 vSamples;
vSamples.x = tHiZMap.SampleLevel (sHiZPoint, vCorner(O, £fLOD) ;
vSamples.y = tHiZMap.SampleLevel (sHiZPoint, vCornerl, fLOD) ;
()
)

vSamples.z = tHiZMap.SampleLevel (sHiZPoint, vCorner2, fLOD);
vSamples.w = tHiZMap.SampleLevel (sHiZPoint, vCorner3, fLOD
float fMaxDepth = max(max(vSamples.x, vSamples.y),

max (vSamples.z, vSamples.w));
// cull agent if the agent depth is greater than the largest of our ZMap values

o.fVisible = ((vPositionSS.z / vPositionSS.w) > fMaxDepth) ? 0 : 1;

’

}

return o;

}
Listing 4. Vertex shader for per-instance occlusion culling

71| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.3.5 Character Management System High Level Overview

Using the above concepts, we can now describe our GPU character management system in its entirety,
illustrated in pseudo-code in Listing 5. We begin by rendering the occluding geometry and preparing the
Hi-Z map. We then run all characters through the view frustum culling filter, and stream out the ones
which pass. The results of the view-frustum pass are then run through the occlusion culling filter using a
DrawAuto call. The instances which pass the occlusion culling test are then run through a series of LOD
selection filters to separate them by LOD.

Once we’ve determined the visible characters in each LOD, we would like to render all of the character
instances in each given LOD. In order to issue the draw call for that LOD, we need to know the instance
count. Obtaining this instance count unfortunately requires the use of a stream out statistics query. Like
occlusion queries, stream out statistics queries can cause significant stalls, and, thus, performance
degradation, when the results are used in the same frame that the query is issued, because the GPU may
go idle while the application is processing the query results. However, an easy solution for this is to re-
order draw-calls to fill the gap between previous computations and the result of the query. In our system,
we are able to offset the GPU stall by interleaving scene management with the next frame’s crowd
movement simulation. This ensures that the GPU is kept busy while the CPU is reading the query result
and issuing the character rendering commands.

RenderOccluders ()
RenderHiZMap ()

// Do view-frustum culling

// streaming visible instances to ‘frustumCullOutput’ buffer
BindFrustumShader ()

IASetVertexBuffers (characterVB) ;

SOSetTargets (frustumCullOutput) ;

Draw (POINT LIST, CHARACTER COUNT) ;

// Do occlusion culling on frustum culling results

// streaming visible instances to ‘occlusionCullOutput’ buffer
BindOcclusionShader () ;

IASetVertexBuffers(frustumCullOutput):;

SOSetTargets (occulsionCullOutput) ;

DrawAuto (POINT LIST) // render output of frustum culling shader

// Filter occlusion culling results by LOD, and issue queries to read the final counts
IASetVertexBuffers(occlusionCullOutput) ;
for(int i=0; i<LOD_ COUNT; i++)
{
BindLODShader (LOD[i] .minDistance, LOD[i].maxDistance);
SOSetTargets (LOD[i].instanceDataBuffer);

LOD[1] .query->Begin ()
DrawAuto (POINT LIST); // render output of occlusion culling shader
LOD[1] .query->End ()

}

// if possible, do other CPU and GPU work here, to fill out the query stall

// read back character counts and render characters in each LOD
for(int i=0; i<LOD COUNT; i++)
{
int instanceCount = LOD[i].query->GetPrimitiveCount ()
DrawInstancedCharacter (LOD[i], instanceCount);

}
Listing 5. Summary of our character management system

72 | Page

Chapter 3: March of the Froblins

3.4 Character Animation

The traditional approach to rendering key framed, skinned characters is to sample the animations and
compute a matrix palette on the CPU, which is then loaded into constant store for consumption by vertex
shaders. This is generally done once per character. Although it is sometimes possible to pack the bones
for multiple individuals into constant store, there are still serious limitations on the number of characters
that can be handled using this approach, and large crowds of characters will still require numerous draw
calls. Furthermore, since we are using the GPU to manage our characters (see sections 3.2 and 3.3), the
traditional approach to skinning is simply not feasible in our case. We solve this problem in our system by
moving the animation sampling onto the GPU.

Our agents can perform a set of predefined actions (walking, eating, mining, etc.,), some of which are
demonstrated in Figure 7. Each action has an associated animation sequence. In our system we use close
to 40 different animation sequences and transitions. During animation preprocessing, we flatten the
transformation hierarchy and compute a bone transformation for each key frame that transforms that
bone directly into object space. During the simulation, each character is assigned an animation sequence,
and a time offset within that sequence. During character rendering, the vertex shader uses this
information to fetch, interpolate, and blend the key frames for each bone. Each instanced character
performs its skinning in object space, and then transforms the result according to its position and
orientation.

Figure 7. Example of different actions that our Froblins can perform. These actions are controlled by the
character logic shader, which also determines the current animation sequence based on each character’s
current state and desired action. From the left: (a) Froblin carrying his hard-earned treasure to the drop-
off location; (b) User placed a noxious poison cloud in the path of Froblins and as a result they scatter
away. Here we see the critter running away from the hazard; (c) The Froblin is about to munch on some
delicious mushrooms; (d) A bit of peaceful resting restores this Froblin’s good spirits.

The layout of our animation data is illustrated in Figure 8. The transformations are stored as 3x4
matrices. We use a texture array, where the horizontal and vertical dimensions correspond to key frame
and bone index, and the slice number is used to index the animation sequence. Varying the time along
one axis of the texture allows us to use the texture filtering hardware to interpolate between the key
frames. Shader code to perform the animation fetch and blending is given in Listing 6. Note that we sort
our per-vertex bone influences by weight, and use dynamic branching to avoid fetching zero-weight
bones. In our case, this provides a notable performance gain, as most of our vertices do not possess more
than two bone influences.

73| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Key 0 Keyl » KeyN

e . RGBA
Matrix Row 0 FP16

Bone 0 < Matrix Row 1

_ Matrix Row 2

Matrix Row 0

Bone 1 < Matrix Row 1

_ Matrix Row 2

Figure 8. Animation texture layout

In our case, the amount of memory consumed by a full set of character animation data is about 8 MB,
which is a reasonable size for our particular application. Unfortunately, a large fraction of this is wasted
space, which is incurred because the width of the texture must be large enough to accommodate the
longest animation sequence. For future directions, we would like to investigate the use of GPU-friendly
sparse textures to store the animation data. In our case, we find that most of the animations are fairly
short, with only a few long outliers. This waste could be significantly reduced by simply packing multiple
short animation sequences into one page of the texture array, and adding a lookup table to the shader
which stores the start location for each sequence. Another, simpler solution might be to continue using
one sequence per page, but to separate short and long sequences into separate arrays. We did not
pursue either of these solutions in our implementation because they would have introduced additional
complexity to the shaders, and memory consumption was not enough of an issue to justify the possible
performance loss.

float fTexWidth;
float fTexHeight;
float fCyclelengths[MAX SLICE COUNT] ;

Texture2DArray<float4> tBones;
sampler sBones; // should use CLAMP addressing and linear filtering

74 | Page

Chapter 3: March of the Froblins

void SampleBone (uint nIndex, float fU, uint nSlice,

{

}

out float4 vRowl, out float4 vRow2, out float4d vRow3)

// compute vertical texture coordinate based on bone index
float fV = (nIndices[0]) * (3.0f / fTexHeight) ;

// compute offsets to texel centers in each row
float fV0 = £V + (0.5f / fTexHeight);
float fVl = fV + (1.5f / fTexHeight);
float £V2 = £V + (2.5f / fTexHeight);

// fetch an interpolated value for each matrix row, and scale by bone weigh
vRowl = fWeight * tBones.SamplelLevel (sBones, float3(fU, £fVv0, nSlice), O
vRow2 = fWeight * tBones.Samplelevel (sBones, float3(fU, £fVl, nSlice), O
vRow3 = fWeight * tBones.Samplelevel (sBones, float3(fU, £fV1l, nSlice), O

float3x4 GetSkinningMatrix(float4 vWeights, uint4 nIndices, float fTime, uint

{

// derive length of longest packed animation
float fKeyCount = fTexWidth;
float fMaxCycleLength = fKeyCount / SAMPLE FREQUENCY;

// compute normalized time value within this cycle
// 1f out of range, this will automatically wrap
float fCyclelLength = fCyclelLengths[nSlice];
float fU = frac(fTime / fCyclelLength);

t
) i
) ;
)5

nSlice

// convert normalized time for this cycle into a texture coordinate for sampling.

// We need to scale by the ratio of this cycle's length to the longest,
// because the texture size is defined by the length of the longest cycle
fU *= (fCycleLength / fMaxCycleLength) ;

float4 vSuml, vSum2, vSum3;
float4 vRowl, vRow2, VvRow3;

// first bone

SampleBone (nIndices[0], fU, nSlice, vSuml, vSum2, vSum3);
vSuml *= vWeights[O0];

vSum2 *= vWeights[O0];

vSum3 *= vWeights[0];

// second bone

SampleBone (nIndices[1l], fU, nSlice, vRowl, vRow2, vRow3);
vSuml += vWeights[l] * vRowl;

vSum2 += vWeights[1l] * vRow2;

vSum3 += vWeights[1l] * vRow3;

// third bone
if(vWeights[2] != 0)
{
SampleBone (nIndices[2], fU, nSlice, vRowl, vRow2, vRow3);
vSuml += vWeights[2] * vRowl;
vSum2 += vWeights[2] * vRow2;
vSum3 += vWeights[2] * vRow3;
}

// fourth bone
if (vWeights([3] != 0)
{
SampleBone (nIndices[3], fU, nSlice, vRowl, vRow2, vRow3);
vSuml += vWeights[3] * vRowl;
vSum2 += vWeights[3] * vRow2;
vSum3 += vWeights[3] * vRow3;
}

return float3x4 (vSuml, vSum2, vSum3);

Listing 6. Shader code to fetch, interpolate, and blend bone animations

)

75| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.5 Tessellation and Crowd Rendering

Figure 9. Our system allows rendering characters with extreme details in close-up when using tessellation
(left). On the right, the same character is rendered without the use of tessellation using identical pixel
shaders and textures. While using the same memory footprint, we are able to add high level of details for
the tessellated character on the left, whereas the low resolution character has much coarser silhouettes.

Recent generations of GPU architecture such as Xbox® 360 and ATI Radeon® HD 2000, 3000 and 4000
series have shown tremendous improvements in geometry processing. These include unified shader
architecture (introduced with Xbox® 360), increased number of dedicated shader units, and hardware
tessellation pipeline. Furthermore, with the introduction of upcoming graphics APIs such as Direct3D® 11
(as described in [KLEINO8] and [GEEOS8]), tessellation and displacement mapping will be universally
supported across all hardware platforms designed for that generation and, thus, solidify tessellation as
the first-class citizen feature in the real-time domain. Next generation games, including those authored
for Xbox® 360 will use tessellation for extreme visual impact, high quality, and stable performance. A
strong understanding of how this technology works is the key to quick and successful adoption.

Froblin control cage, 5,160 faces Vertex and index buffers: 100KB
Low resolution model

2K x 2K 16 bit displacement map: 10MB

Zbrush® high resolution Froblin model 15+ M faces Vertex buffer: ~270 MB

Index Buffer: 180 MB

Table 1. Comparison of memory footprint for high and low resolution models for our main character.

76 | Page

Chapter 3: March of the Froblins

Figure 10. Comparison of low resolution model (top) and high resolution model (bottom) for the Froblin
character.

77 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Hardware tessellation provides several key benefits specifically crucial for interactive systems, such as
video games. One of the main advantages is effective compression of vertex data. When using
tessellation, we are specifying the surface topology, parameterization and animation data for the coarse
control mesh. This mesh is authored to have low amount of detail, and just to capture the overall shape
of the desired object. We can then combine rendering of this control cage with GPU tessellation and
displacement mapping to greatly increase the overall amount of details. High frequency details such as
wrinkles, bumps and dents are captured by the displacement map. Figure 10 shows an example of this for
our main character. Thus using tessellation allows us to reduce memory footprint and bandwidth. This is
true both for on-disk storage and for system and video memory footprint, thus reducing the overall game
distribution size, improving loading time. The memory savings are especially relevant for console
developers, where memory resources are scarce. Table 1 demonstrates memory savings for our main
character, the Froblin. Additional overview of the benefits provided by tessellation can be found in
[TATARCHUKOS].

3.5.1 GPU Tessellation Pipeline

In this section we will provide an overview of GPU tessellation pipeline available on current consumer
hardware, as used in our system. We designed an APl for a GPU tessellation pipeline taking advantage of
hardware fixed-function tessellator unit available on recent consumer GPUs. The tessellation process is
outlined in Figure 11.

Tessellator—J

Evaluate
surface
positions

Add
Displacement

Tessellated and Displaced
Mesh

Coarse Super-Prim Mesh Tessellated Mesh ‘

Figure 11. An overview of the tessellation process. We start by rendering a coarse, low resolution mesh
(also referred to as the “control cage” or “the super-primitive mesh”). The tessellator unit generates new
vertices, thus amplifying the input mesh. The vertex shader is used to evaluate surface positions and add
displacement, obtaining the final tessellated and displaced high resolution mesh seen on the right.

Going through the process for a single input polygon, we have the following: the hardware tessellator unit
takes an input primitive (which we refer to as a super-primitive), and amplifies it (up to 411 triangles, or
15X times for Xbox® 360 or ATl Radeon® HD 2000-4000 GPU generations, or 64X for Direct3D® 11
generation of graphics cards). A vertex shader (which we refer to as an evaluation shader) is invoked for

78 | Page

Chapter 3: March of the Froblins

each tessellated vertex and is provided with the vertex indices of the super-primitive, and the barycentric
coordinates of the vertex. The evaluation shader uses this information to calculate the position of the
tessellated vertex, using whatever technique it wishes. The level of tessellation can be controlled either
by a per-draw call tessellation factor, or by providing per-edge tessellation factors in a vertex buffer for
each triangle edge in the input mesh. We recommend the interested reader look to [TATARCHUKO8] for
more details about the specific capabilities of the GPU tessellation on current and future hardware.

3.5.2 Rendering Characters with Interpolative Tessellation

We use interpolative planar subdivision with displacement to efficiently render our highly detailed
characters. We specify tessellation level, controlling the amount of amplification, per draw-call.
Therefore, we can use tessellation to control how fine we are going to subdivide this character’s mesh.
We can use the information about character location on the screen or other factors to control the desired
amount of details. Furthermore, we use the same art assets for rendering the tessellated character as for
the regular, conventional rendering used in current games.

Combining tessellation with instancing allows us to render diverse crowds of characters with minimal
memory footprint and bandwidth utilization. By storing only a low-resolution model (5.2K triangles), and
applying a displacement map in the evaluation shader, we can render a detail-rich, 1.6M triangle
character using very little memory. We can also limit per-vertex animation computations to the original
mesh, since we only need to store animation data for the control cage of the character. GPU tessellation
allows us to provide the data to GPU at coarse resolution, while rendering with high levels of detail.
Listing 7 provides an example of the vertex shader we used for evaluating the resulting surface positions.

79| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

struct VSInput
{

float3 vPositionOS vertO : POSITIONO;
float3 vNormalOS vertO : NORMALO;

float3 vTangentOS vertO : TANGENTO;
float3 vBinormalOS vertO : BINORMALO;
float2 vUV vert0 : TEXCOORDO;
float3 vPositionOS vertl : POSITIONL;
float3 vNormalOS vertl : NORMALL;

float3 vTangentOS vertl : TANGENTI1;
float3 vBinormalOS vertl : BINORMALIL;
float2 vUV vertl : TEXCOORDI1;
float3 vPositionOS vert2 : POSITIONZ;
float3 vNormalOS vert2 : NORMALZ2;

float3 vTangentOS vert2 : TANGENT2;
float3 vBinormalOS vert2 : BINORMALZ;
float2 vUV vert2 : TEXCOORD2;

float3 vInstancePosWS : WSInstancePosition; // This is per-instance data

float3 vBarycentric: TessCoordinates;// Tessellation-specific system-generated values
bi
struct VSOutput
{

float3 vNormalWS : Normal;
float3 vTangentWs : Tangent;
float3 vBinormalWs : Binormal;
float2 vUV : TEXCOORDO;
float fGroup : GrouplD;
float4 vPositionWs Position;

float4 vPositionSS SV _POSITION;

float4dx4 mvVP;
Texture2D<float> tDisplacement;
SamplerState sPointClamp;
SamplerState sBaseLinear;

float fDisplacementScale;
float fDisplacementBias;

VSOutput VS (VSInput i)
{
VSOutput o;

float3 vPositionOS = i.vPositionOS vert(0 * i.vBarycentric.x +
i.vPositionOS vertl * i.vBarycentric.y +
i.vPositionOS vert2 * i.vBarycentric.z;

float3 vNormalOS = i.vNormalOS vertO * i.vBarycentric.x +
i.vNormalOS vertl * i.vBarycentric.y +
i.vNormalOS vert2 * i.vBarycentric.z;

float3 vTangentOS = i.vTangentOS vert0 * i.vBarycentric.x +
i.vTangentOS vertl * i.vBarycentric.y +
i.vTangentOS vert2 * i.vBarycentric.z;

float3 vBinormalOS = i.vBinormalOS vert0 * i.vBarycentric.x +
i.vBinormalOS vertl * i.vBarycentric.y +
i.vBinormalOS vert2 * i.vBarycentric.z;

// Interpolated texture coordinates:
0.vUV = i.vUV vert0 * i.vBarycentric.x + i.vUV vertl * i.vBarycentric.y +
i.vUV vert2 * i.vBarycentric.z;

// Displace vertex by object's displacement map
float fDisplacement = tDisplacement.SamplelLevel (sPointClamp, o.vUV, 0).r;

fDisplacement = fDisplacement * fDisplacementScale + fDisplacementBias;

vPositionOS = vPositionOS + fDisplacement * vNormalOS;

80| Page

Chapter 3: March of the Froblins

// Convert position and tangent frame from object space to world space by rotating and
// translating because we are always rotating about y, we can simplify the math

// somewhat for extra perf

float3 vPositionWs Rotate2D(vDir, vPositionOS) + vInstancePosWS;

float3 vNormalWsS Rotate2D(vDir, vNormalOS);

float3 vTangentWsS Rotate2D(vDir, vTangentOS);

float3 vBinormalWS Rotate2D(vDir, vBinormalOS) ;

o.vPositionSS = mul (mVP, float4(vPositionWS, 1));
o.vPositionWS = float4(vPositionWs, 1);

o.vNormalWs = vNormalWs;

o.vTangentWS = vTangentWS;

0.vBinormalWS = vBinormalWsS;

return o;

Listing 7. Example simple evaluation shader for rendering instanced tessellated characters.

Given that we are rendering our character with displacement map, we must make a note about lighting.
Traditionally, animated characters are rendered and lit using tangent-space normal maps (TSNM).
However, there exists a concern with regards to using displacement mapping when lighting using tangent-
space normal maps. In that case, we are essentially generating a new tangent frame as we are displacing,
changing the actual displaced normal (as shown in Figure 12).

Figure 12. Displacement of the vertex modifies the normal used for rendering. P is the original point
displaced in the direction of geometric normal N displacement amount D. The resulting point P’ needs to
be shaded using normal N'.

However, we intend to light the displaced surface using tangent space normal map, using the encoded
normals. In order to combine TSNM with displacement mapping, we need to ensure several constraints
are met. Namely, that we are computing tangent space during rendering in the same exact manner as
was used to generate the displacement and normal maps, and that the generation process for
displacement and normal maps also used identical tangent space and models. In other words, ideally, the
displacement map must be generated at the same time as the normal map. In that case, the normal
encoded in the tangent-space normal map, would match the desired normal N'. By using publicly
available AMD GPUMeshMapper tool which provides source code for tangent-space generation, we can
ensure these requirements are met.

8l|Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.5.3 Tessellated Characters Level of Detail Control

In the Froblins demo, we use a three-level static LOD scheme, as discussed in section 3.3.2. Tessellation
and displacement mapping are applied only to the characters in the most detailed level. In order to
guarantee a stable frame rate in dense crowd situations, we compute the tessellation level as a function
of the number of tessellated characters. This is effective in avoiding a polygonal count explosion and
retains the performance benefits of geometry instancing. The tessellation level is set as follows:

Tmax

2
T = clamp (T' 1, Thax)

Here, T is the tessellation level to be used for character instances in the first detail level, N is the number
of character instances in the first detail level, and T,,,x is the maximum tessellation level to use for a single
character. This scheme effectively bounds the number of triangles created by the tessellator, and ensures
that the primitive count will never increase by more than the cost of two fully tessellated characters. If
there are more than two such characters in the view frustum, this scheme will divide the tessellated
triangles evenly among them. Naturally, this can lead to popping as the size of the crowd changes
dramatically from one frame to the next, but in a lively scene with numerous animated characters, this
popping is hard to perceive.

3.5.3 Rendering Optimizations

Because hardware tessellation can generate millions of additional triangles, it is essential to minimize the
amount of per-vertex computation. Our character vertex shaders already use a fairly expensive technique
for skinned animation on the GPU (see Section 3.4), and performing these animation calculations inside
the evaluation shader is wasteful.

We improve performance with a multi-pass approach for rendering out animated characters. We
compute control cage pre-pass, where we can compute all relevant computations for the original low
resolution mesh, such as animation and vertex transformations. This method is general and takes
advantage of Direct3D® 10 stream out functionality. Note that in order to reduce the amount of memory
being streamed out per character, as well as reduce vertex fetch and vertex cache reuse for the
evaluation shader we augmented our control cage multi-pass method with vertex compression and
decompression described below. Note that using this multi-pass method for control cage rendering is
beneficial not only for rendering tessellated characters, but for any rendering pipeline where we wish to
reuse results of expensive vertex operations multiple times. For example, we can use the results of the
first pass for our animated and transformed characters for rendering into shadow maps and cube maps
for reflections.

We perform the skinning calculations only once per character, on the super-primitive vertices, and the
results are simply interpolated from the super-primitives by the evaluation shader. In the first pass, we
render all of the character vertices an as instanced set of point primitives, perform skinning on them (as
described in section 3.4), and stream out the results into a buffer. In the second (tessellated) pass, the
instance ID and super-primitive vertex IDs are used by the evaluation shader to fetch the transformed

82| Page

Chapter 3: March of the Froblins

vertex data, interpolate a new vertex, and apply displacement mapping. Note that the only quantities that
need to be output in the first pass are quantities affected by the transformations (such as vertex positions
and normals, but not the texture coordinates or vertex colors, for example).

Although it is helpful to stream and re-use the skinning calculations, this alone is not very effective,
because the vertex data will be streamed at full precision, and the evaluation shader must still pay a large
cost in memory bandwidth and fetch instructions in order to retrieve it. Additionally, we would need to
allocate sufficient stream out buffer to store transformed vertices. We use a compression scheme to pack
the transformed vertices into a compact 128-bit format in order to remove this bottleneck and to reduce
the associated memory footprint. This allows the tessellation pass to load a full set of transformed vertex
data using a single fetch per super-primitive vertex. Although the compression scheme requires additional
ALU cycles for both compression and decompression, this is more than paid for by the reduction in
memory bandwidth and fetch operations in the evaluation shader.

We compress vertex positions by expressing them as fixed-point values which are used to interpolate the
corners of a sufficiently large bounding box which is local to each character. The number of bits needed
depends on the size of the model and the desired quality level, but it does not need to be extremely large.
In our case, the dynamic range of our vertex data is roughly 600 cm. A 16-bit coordinate on this scale
gives a resolution of about 90 microns, which is slightly larger than the diameter of a human hair.

We can compress the tangent frame by converting the basis vectors to spherical coordinates and
guantizing them. Spherical coordinates are well suited to normal compression since every compressed
value in the spherical domain corresponds to a unique unit-length vector. In a Cartesian representation
(such as the widely used DEC3N format), a large fraction of the space of compressed values will go
unused. What this means in practice is that a much smaller bit count can be used to represent spherical
coordinates at a reasonable level of accuracy. We have found that using an 8-bit spherical coordinate pair
for normals results in rendered images that are comparable in quality to a 32-bit Cartesian format. The
main drawback of using spherical coordinates is that a number of expensive trigonometric functions must
be used for compression and decompression, but we have found that the benefits of a small compressed
format outweigh the additional ALU cost on current graphics hardware.

Texture coordinates are compressed by converting the UV coordinates into a pair of fixed-point values,
using whatever bits are left. In order to ensure acceptable precision, this requires that the UV
coordinates in the model be confined to the 0-1 range, with no explicit tiling of textures by the artist. For
small textures, a smaller bit count could be used for the UV coordinates, provided that the UVs are
snapped to the texel centers.

83| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

R X Y
(16) (16)

zZ T6 To

G (16) (8) (8)

Nx Ny Nz

B (10) (1D (11)
A U v
(16) (16)

- J
'
32 Bits

Figure 13. Data format used for compressed, animated vertices

Our bit layout for the compressed vertices is shown in Figure 13, and corresponding compression and
decompression code is shown in Listings 8 and 9. We use 16 bits for each component of the position, two
8-bit spherical coordinates for the tangent, 32 bits for the normal, and 16 for each UV coordinate. Since
our tangent frames are orthogonal, we refrain from storing the binormal, and instead re-compute it
based on the decompressed normal and tangent. Since a full 32-bit field is available, we use DEC3N-like
compression for the normal, which requires fewer ALU operations than spherical coordinates. If
additional data fields are needed, we have also found that 8-bit spherical coordinates can be used for the
normal, at a quality level comparable to DEC3N. We experimented with all of these alternatives on the
ATI Radeon™ HD 4870 GPU, but found little practical difference in performance or quality between any of
them.

We believe that the compressed format that we use here would also make an excellent storage format
for static geometry. In this case, (and also for the case of non-instanced characters) the decompression
could be accelerated by leveraging the vertex fetch hardware to perform some of the integer to float
conversions. We cannot do this in our case, because we must explicitly fetch vertex data with buffer
loads, using the instance ID of the character, instead of using the fixed function vertex fetch. We obtained
a 25% performance improvement via our multi-pass technique, and we observed gains as high as 37%
with using the compression scheme. Due to quantization used for compression, there are subtle
differences between the two images due to compression. However, these artifacts are difficult to notice
in a dense, dynamic crowd of animated characters, and even difficult to discern in static comparison
screenshots.

84| Page

Chapter 3: March of the Froblins

// Quantizes a floating point value (0-1) to a certain number of bits
uint Quantize(float v, uint nBits)
{

float fMax = ((float) (1 << nBits))-1.0f;

return uint (round(v*fMax));

}

uint PackShorts(uint nHigh, uint nLow)
{
return (nHigh << 16) | (nLow) ;

}

uint PackBytes(uint nHigh, uint nLow)
{
return (nHigh << 8) | (nLow) ;

}

/// Converts a vector to spherical coordinates.
/// Theta (x) is in the 0-PI range. Phi (y) is in the -PI,PI range
float2 CartesianToSpherical(float3 cartesian)

{

cartesian = clamp(normalize(cartesian), -1,1); // beware of rounding error
float theta = acos(cartesian.z);

float s = sgrt(cartesian.x * cartesian.x + cartesian.y * cartesian.y);
float phi = atan2(cartesian.x / s, cartesian.y / s);

if(s == 0

phi = 0; // prevent singularity if normal points straight up

return float2(theta, phi);
}

// Converts a normal vector to quantized spherical coordinates
uint2 CompressVectorQSC(float3 v, uint nBits)
{

float2 vSpherical = CartesianToSpherical(v);

return uint2(Quantize(vSphericalNorm.x / PI, nBits),
Quantize ((vSphericalNorm.y + PI) / (2*PI), nBits));
}

// Encodes position as fixed-point lerp factors between AABB corners
uint3 CompressPosition(float3 vPos, float3 vBBMin, float3 vBBMax, uint nBits)
{
float3 vPosNorm = saturate((vPos - vBBMin) / (vBBMax-vBBMin)):
return uint3(Quantize (vPosNorm.x, nBits),
Quantize(vPosNorm.y, nBits)
Quantize (vPosNorm.z, nBits)

);
}

uint PackCartesian(float3 v)

{

float3 vUnsigned = saturate((v.xyz * 0.5) + 0.5);
uint nX = Quantize(vUnsigned.x, 10);

uint nY = Quantize(vUnsigned.y, 11);

uint nZ = Quantize(vUnsigned.z, 11);

return (nX << 22) | (nY << 11) | nZ;

}

uint4 PackVertex (CompressedVertex v, float3 vBBoxMin, float3 vBBoxMax)

{
uint3 nPosition = CompressPosition(v.vPosition, vBBoxMin, vBBoxMax, 16);
uint2 nTangent = CompressVectorQSC(v.vTangent, 8);

uint4 nOutput;

nOutput.x = PackShorts(nPosition.x, nPosition.y);

nOutput.y = PackShorts(nPosition.z, PackBytes(nTangent.x, nTangent.y));
nOutput.z = PackCartesian (v.vNormal);

nOutput.w = PackShorts(Quantize(vUV.x, 16), Quantize(vUV.y, 16));

return nOutput;

}

Listing 8. Compression code for vertex format given in Figure 13.

85| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008

N. Tatarchuk (Editor)

float DeQuantize(uint n,

{

uint nBits)

float fMax = ((float)
return float (n)/fMax;

(1 << nBits)) - 1.0f;

}

float3 DecompressVectorQSC(uint2 nCompressed, uint nBi
{

float2 vSph = float2(DeQuantize(nCompressed.x, nBi

DeQuantize (nCompressed.y, nBi

vSph.x = vSph.x * PI;

vSph.y = (2 * PI * vSph.y) - PI

float fSinTheta = sin(vSph.x);

float fCosTheta = cos(vSph.x);

float £SinPhi = sin(vSph.y);

float fCosPhi = cos(vSph.y);

return float3(£SinPhi * fSinTheta,

}

float3 DecompressPosition(uint3 nBits, float3 vBBMin,
{
float3 vPosN = float3(DeQuantize(nBits.x, nCount),
DeQuantize (nBits.y, nCount),
DeQuantize (nBits.z, nCount)
return lerp(vBBMin.xyz, vBBMax.xyz, vPosN);

}

float3 UnpackPosition(uint4 nPacked,
{

float3 vBBoxMin,

uint3 nPos;

nPos.xy = uint2(nPacked.x >> 16,
nPos.z = nPacked.y >> 16;

return DecompressPosition(nPos,

nPacked.x & 0x0000

vBBoxMin, vBBoxMax,

}

float2 UnpackUV(uint4 nPacked)
{
uint2 nUV =
float2 vUV =
return vUV;

uint?2 (
float2 (

nPacked.w >> 16, nPacked.w & 0x0
DeQuantize(nUV.x, 16),

}

float3 UnpackTangent (uint4 nPacked)
{
uint2 nTan = uint?2 (nPacked

return DecompressVectorQScC (

(nPacked.y >> 8) & Oxff,
nTan, 8);

}

float3 UnpackCartesian(uint n)
{

uint nX = (n >> 22) & O0x3FF;
uint nY = (n >> 11) & Ox7FF;
uint nZ = n & OxTFF;
float £X = (2.0f * DeQuantize(
float fY = (2.0f * DeQuantize (
float fz = (2.0f
return float3(

nX, 10)) -
ny, 11)) -
nz, 11

1.0£f;
1.0f;
* DeQuantize (1.0f;
X, fY, f7);

}

CompressedVertex UnpackVertex(uint4 nPacked,
{
CompressedVertex vVert;
vVert.vPosition = UnpackPosition(nPacked, vBBoxMin,
vVert.vNormal = UnpackCartesian(nPacked.z);
vVert.vTangent = UnpackTangent (nPacked) ;
vVert.vBinormal = normalize(cross(vVert.vTangent,
vVert.vUVvV = UnpackUV (nPacked);
return vVert;

}
Listing 9. Decompression code for vertex format given in Figure 13

86 |Page

fCosPhi * fSinTheta,

DeQuantize (

float3 vBBoxMin,

tCount)

tCount),
tCount));

fCosTheta

float3 vBBMax,

);

float3 vBBoxMax

ffff),

16);

000ffff);
nUV.y, 16

.y & Oxff);

vBBoxMax) ;

vVert.vNormal)

)i

uint nCount

)

) i

float3 vBBoxMax

)

Chapter 3: March of the Froblins

3.5.4 Displacement Map Tips and Ensuring Watertightness

We would like to share several practical tips for generation and using of displacement maps that we’ve
learned throughout our process. Firstly, the method used for generation of displacement maps must
match the method for evaluating subdivided surface. This naturally correlates to the absolute need to
know the process used by the modeling tool used for map generations. Many DCC tools such as Autodesk
Maya® will first use approximating subdivision process, such as Catmull-Clark subdivision method, on the
control mesh (the low resolution, or super-primitive, mesh). Once the mesh has been smoothed, then the
fine-scale details are captured into a scalar or vector displacement map. When using these tools, we must
evaluate the final surface using Catmull-Clark subdivision methods. However, the evaluation shaders are
reasonably expensive, which precipitated our decision to use interpolative planar subdivision due to its
extreme simplicity for evaluation. Additionally a number of concerns arise with topology fix-up and
treatment of extraordinary points, as well as patch reordering to ensure watertightness during
displacement. However, should the interested reader may wish to investigate further about using GPU
tessellation for Catmull-Clark surfaces, they can find additional material and further references in
[TATARCHUKOS8].

In our case, we used the AMD GPUMeshMapper tool ((AMDGMMO08]), designed specifically for robust
generation of displacement maps for interpolative planar subdivision. Specifically, given a pair of low and
high resolution meshes, this tool provides a number of different options for controlling the envelopes for
ray casting from low to high resolution map in order to capture displacement and normal information.
Furthermore, in order to achieve controllable results at run-time, we must know the exact floating point
values for displacement scale and bias for the generated displacement map. This tool provides this
information, collected during the generation process, in the form of parameters which can be used
directly in the shader.

Particular care needs to be paid during displacement mapping in order to generate resulting watertight
surfaces. This is true regardless of the subdivision method used for evaluation. One challenge with
rendering complex characters with displacement maps that contain texture uv borders is the introduction
of texture uv seams (see Figure 14 for an example of such a displacement map). Unless neighboring uv
borders are laid out with the same orientations and lengths, displacing with these maps will introduce
geometry cracks along the uv borders (Figure 14). This happens due to bilinear discontinuities and to
varying floating point precision on different regions of the texture map. Seamless parameterizations
remove bilinear artifacts, but do not solve floating point precision issues. One-to-one parameterization is
extremely difficult to obtain for complex characters, if not impossible in practical scenarios. We solve this
problem during the map generation process, rather than at run-time, via additional features implemented
as part of the GPUMeshMapper tool. We post-process our displacement maps by correcting all the
texture uv borders during the displacement map generation, by identifying the border triangle edges and
performing filtering across edges (with additional fix-up) to alleviate displacement seams.

87| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Displacement map Rendered character using the Zoomed-in view shows a
displacement map with a seam crack in the surface

Figure 14. Example of a visible crack generated due to inconsistent values across the edges of
displacement map for this character. On the left we highlighted the specific edges along the seam. Note
that the adjacent edges for this seam do not have uniform parameterization.

3.6 Lighting and Shadowing

3.6.1 Rendering Shadows in Large Scale Environment

High quality rendering system requires dynamic shadows cast by characters onto the environment and
themselves. To manage shadow map resolution, our system implements Parallel Split Shadow Maps
[ZSXL06]. The view-frustum test described in Section 3.3 is used to ensure that only characters that are
within a particular parallel split frustum are rendered. Occlusion culling could also be used for shadow
maps as well, but we do not do this in our system, because only characters and smaller scene elements
are rendered into the shadow maps and there is little to cull the characters against (shadows cast by
terrain are handled separately). We use aggressive filtering for generation of soft shadows. This allows us
to use further mesh simplification for the LOD rendered into shadow maps. For characters in the higher-
detail shadow frusta, we use the same simplified geometry that is used for the most distant level of detail
during normal rendering. For more distant shadows, we can use a more extreme simplification.

88| Page

Chapter 3: March of the Froblins

3.6.2 Lighting

Figure 15. A medium resolution spherical harmonic light map is used to light a highly detailed terrain:
[left] the fully shaded terrain, [center] just the lighting from the spherical harmonic light map, [right] a
checkerboard pattern overlay to indicate light map texel density.

In this section we describe the lighting system used in the AMD Froblins demo. The demo does not have a
dynamic day/night cycle, our global scene lighting is static which enables us to use a light map to store
precomputed incident lighting on the terrain. We chose to use a Spherical Harmonic Light Map (SHLM)
[CHENOS]. A single texel in an SHLM stores a complete lighting environment at that point. At run time, the
SHLM is queried and the lighting environment is evaluated in the direction of the shading normal, for
example, to compute a diffuse lighting term. Because the shading normal is decoupled from the light
map, a SHLM can be stored at a lower resolution than the finest level of shading detail while still
providing detailed lighting results (Figure 15). This decoupling also enables us to use the terrain’s static
light map like a radiance cache for computing lighting on scene elements such as our dynamic characters
and props. We briefly motivate and discuss our method for generating the SHLM and then show how we
used this data for lighting. Finally, we present a simple technique for integrating dynamic shadows, cast
by our characters, into the static scene while avoiding “double shadowing” artifacts in regions where
dynamic character shadows overlap static terrain shadows.

3.6.2.1 SHLM Generation

Our outdoor scene is comprised of two main global light emitters. The primary emitter is the sun which is
modeled as a directional light source. The secondary emitter is the sky itself which is modeled using a high
dynamic range environment map. To generate the SHLM, the terrain is divided uniformly into a grid that
matches our desired light map resolution of 1024 x 1024. At the center of each grid square, lighting
samples are taken at a point just above the terrain. Samples are taken at a distance off the terrain of
approximately half of our character’s height, as shown in Figure 16. This height was chosen to ensure that
the samples would work well for lighting both the terrain as well as the characters. Samples taken on the
ground only capture a partial lighting environment and are poorly suited for shading points above the

8| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

terrain that may require the missing lower hemisphere of the lighting environment. On the other hand,
samples taken too far off the ground can create artifacts when used for shading the terrain. In particular,
this can lead to missing or unnatural terrain shadow boundaries as well as incorrect self-reflectance. In
practice, we found that taking samples at a moderate height above the terrain we were able to capture
complete lighting environments that were useful for shading both the terrain and the characters.

—

i Y
AD i

Figure 16. The lighting environment is captured at a point by firing rays into the environment. [Left] A
sample taken on the terrain surface does not contain useful lighting data in the lower hemisphere and is
not suitable for shading characters that may have shading normals that point down into the lower
hemisphere of the lighting environment. [Center] A sample point is offset from the terrain at a distance of
approximately half of our characters’ height, ensuring the captured lighting environment is useful for
shading characters as well as the terrain itself. [Right] A character requires a full spherical lighting
environment that captures bounced lighting from the ground below.

At each sample point, direct and indirect light is captured and projected into spherical harmonics. The
direct light from the sun is computed by casting a distribution of rays in the direction of the sun and
testing for occlusion. Indirect light from the sun and from the sky is collected by firing 800 rays, with a
modest recursion limit, in all directions on the sphere, using a stratified sampling scheme. The incident
radiance is then stored using 3" order spherical harmonics. This data is written to disk as 16-bit floating
point textures using the OpenEXR image file format.

3.6.2.2 Rendering Using SHLM

For rendering, we pack the 3" order spectral SHLM data into seven RGBA16F textures. Others have
suggested using various compression schemes [WWS*07] [Hu08] but our memory budget did not require
us to compress the data and we found that the uncompressed coefficients gave slightly higher quality
lighting results particularly in areas of high contrast such as shadow boundaries. In these scenarios we
found that we could get higher quality lighting results by storing a lower resolution uncompressed SHLM
rather than a higher resolution compressed SHLM. We did observe that the DC components of the SHLM
could be stored using a shared exponent texture format (RGBE) with minimal loss in quality; higher order
spherical harmonic coefficients cannot be stored in this way because the format does not allow for
negative values.

N|Page

Chapter 3: March of the Froblins

Final lighting is computed in a pixel shader by sampling the SHLM, removing the dominant directional
light from the linear terms, then summing the contribution of this dominant directional light and the
“residual” environment lighting [SLOANOS8]. DirectX® HLSL shader code demonstrating this is provided in
the listing at the end of this section.

Since our characters are dynamic, their shadows cannot be baked in to the SHLM as a preprocess. Instead,
a more traditional real-time shadowing method, parallel-spit shadow mapping [ZSXL06], was used to
render their shadows. We did not want to simply darken the terrain wherever a character casts a shadow,
this would incur a double shadowing artifact in regions that are already shadowed in the light map due to
terrain self occlusion as shown in Figure 17. Ideally we would like the shadow map to only attenuate the
sun’s contribution to the light map. This can be very nicely approximated by separating a dominant
directional light from the lighting environment in the terrain’s pixel shader. Please refer to [SLOANO8] for a
discussion on extracting a dominant light from a spherical harmonic lighting environment.

Once the dominant directional light is removed from the lighting environment sampled from the SHLM,
we test if this light’s direction corresponds with the sun’s direction. If both vectors point in the same
direction then we determine that the pixel is in direct sun light and the shadow map should be applied. If
the vectors disagree, then the pixel is considered to already be occluded from the sun and thus the
effects of the shadow map are faded out. Once the adjusted shadowing term is computed, it is then used
to attenuate the dominant lighting term which is then added to the remaining spherical harmonic lighting
environment. Please see the sample code provided at the end of this section.

Figure 17. Characters cast shadows on the terrain. The left half of the image is in the shadow of a
mountain, the right half is in direct sun light. [Top] Characters incorrectly cast double shadows on
occluded region of the terrain. [Bottom] A shadow correction factor is applied to prevent double
shadowing artifacts.

91| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

We also use the terrain’s SHLM for lighting our characters and scene props (Figure 18). In the characters’
pixel shader, the point being shaded is projected onto the texture space of the SHLM and samples are
taken which are then used to approximate a lighting environment for the character. This does not provide
any lighting variation along the vertical axis but in practice it works quite well even for tall scene elements
such as the tent in the figure’s foreground or the pagoda in the figure’s background. Additional texture
maps could be used to store vertical gradients for the spherical harmonic coefficients; this would provide
more accurate lighting environment reconstruction for points located above the terrain [AKDS04].

92| Page

Chapter 3: March of the Froblins

. g 1l TS 3 . S & ¥ - X " - .- "
Figure 18. Dynamic characters (bottom) and other static scene props (top) build an approximate lighting

environment for shading by sampling from the terrain’s SHLM.

93| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

// Samplers

sampler g sSHLMPoint;
sampler g sSHLMBilinear;
sampler g sSHLMTrilinear;
sampler g sSHLMAnisotropic;

// SHLM Textures

Texture2D<float4> tSHLM RO; // DC & linear (red)
Texture2D<float4> tSHLM R1l; // first 4 quadratic (red)
Texture2D<float4> tSHLM GO; // DC & linear (green)
Texture2D<float4> tSHLM Gl; // first 4 quadratic (green)
Texture2D<float4> tSHLM BO; // DC & linear (blue)
Texture2D<float4> tSHIM B1l; // first 4 quadratic (blue)
Texture2D<float3> tSHLM RGB2;

// Global parameters, set by the application
float2 g vSHLMEnvironmentScale;
float3 g_vSHLMSunDirectionWs;

//
// Evaluate a SH basis functions for a given direction
//
void SHEvalDirection (float3 vDirection, out float4 vOut[3])
{
float3 vDirection2 = vDirection * vDirection;

vOut [0] .x = 0.282095;

vOut[0].y = -0.488603 * vDirection.y;

vOut[0].z = 0.488603 * vDirection.z;

vOut [0] .w = -0.488603 * vDirection.x;

vOut[l].x = 1.092548 * vDirection.x * vDirection.y;
vOut[l].y = -1.092548 * vDirection.y * vDirection.z;
vOut[l].z = 0.315392 * (3.0*vDirection2.z - 1.0);
vOut[1l].w = -1.092548 * vDirection.x * vDirection.z;
vOut[2].x = 0.546274 * (vDirection2.x - vDirection2.y);

// Last three channels go unused
vOout[2] .yzw = 0.0;

return;

}

//
// Turn world space position into light map UV
//

float2 ComputeLightMapUV (float3 vPositionWsS)

{
float2 vUV = (vPositionWS.xz / g vSHLMEnvironmentScale) + 0.5;

return vUV;

}

//
// Assemble the SH coefficients & Dominant light info. SH is 3rd order (9
// coefficients per color channel). Coefficients are stored in an array of

// floatd vectors, the last the components of the last float4 vector in each
// array go unused.

//

// Inputs:

// vUV - Texture coord

// sLightMapSampler - sampler state

//

// Outputs:

// vSHr[] - Residual lighting environment (dominant light removed)
// vSHg[] - Residual lighting environment (dominant light removed)
// vSHb[] - Residual lighting environment (dominant light removed)
// cDominantColor - Dominant directional light color

// vDominantDir - Dominant directional light direction

//

void GetLightingEnvironment (float2 vUV, sampler sLightMapSampler,
out float4 vSHr[3], out float4 vSHg[3],

94 | Page

Chapter 3: March of the Froblins

}

//

out float4 vSHb[3], out float3 cDominantColor,
out float3 vDominantDir)

vSHr[0] = tSHLM RO.Sample(sLightMapSampler, vUV); // DC & linear terms
vSHg[0] = tSHLM GO.Sample(sLightMapSampler, vUV); // DC & linear terms
vSHb[0] = tSHLM BO.Sample(sLightMapSampler, vUV); // DC & linear terms
vSHr[1] = tSHLM Rl.Sample(sLightMapSampler, vUV); // first 4 quadratic
vSHg[1l] = tSHLM Gl.Sample(sLightMapSampler, vUV); // first 4 quadratic
vSHb[1] = tSHLM Bl.Sample(sLightMapSampler, vUV); // first 4 quadratic

// final quadratic (red, green, blue)

float3 vTmp = tSHLM RGB2.Sample(sLightMapSampler, vUV);
vSHr([2].x = vTmp.r; // last 3 channels of vSHr[2] go unused
vSHg[2] .x = vTmp.g; // last 3 channels of vSHr[2] go unused
vSHb[2] .x = vTmp.b; // last 3 channels of vSHr[2] go unused

// extract dominant light direction from linear SH terms
vDominantDir = (vSHr[0].yzw * 0.3 + vSHg[O0].yzw * 0.59 + vSHb[O].yzw*0.11);
vDominantDir = normalize(float3(-vDominantDir.zx, vDominantDir.y));

// turn dom direction into an SH directional light with unit intensity
floatd4 Ld[3];

SHEvalDirection(vDominantDir, Ld);

Ld[0] *= 2.95679308573; // factor to make it unit intensity

Ld[l] *= 2.95679308573;

Ld[2] *= 2.95679308573;

float fDenom = dot (Ld[0],Ld[0])+dot(Ld[1],Ld[1])+(Ld[2].x*Ld[2].x);
// find the color of the dominant light
cDominantColor.r =

(dot (LA[0],vSHr[0])+dot (LA[1],vSHr[1])+(Ld[2] .x*VSHr[2] .x))/fDenom;

cDominantColor.g =
(dot (Ld[0],VvSHg[0])+dot (Ld[1],vSHg[1l])+(Ld[2].x*VSHg[2].x)) /fDenom;

cDominantColor.b =
(dot (LA[0],VvSHb[0])+dot (Ld[1],VvSHb[1])+(Ld[2].x*vSHb[2] .x)) /fDenom;

// subtract dominant light from original lighting environment so we
// don't get double lighting

vSHr[0] = vSHr[0] - Ld[O0]*cDominantColor.r;
vSHg[0] = vSHg[0] - Ld[0]*cDominantColor.g;
vSHb[0] = vSHb[0] - Ld[0]*cDominantColor.b;
vSHr[1l] = vSHr[l] - Ld[l]*cDominantColor.r;
vSHg[1l] = vSHg[l] - Ld[l]*cDominantColor.g;
vSHb[1] = vSHb[1] - Ld[1l]*cDominantColor.b;

vSHr[2].x = vSHr[2].x - Ld[2].x*cDominantColor.r;
vSHg[2] .x = vSHg[2].x - Ld[2].x*cDominantColor.g;
vSHb[2].x = vSHb[2].x - Ld[2].x*cDominantColor.b;

// Compute the amount of shadow to apply. fShadow comes from a shadow
// map lookup.

//

float ComputeDirectLightingShadowFactor (float3 vDominantLightDir,

{

float fShadow)

// in order to avoid double darkening we figure out how much the dominant
// light matches up with the actual directional light source and then use
// that to figure out how much extra darkening we should apply.

// thresholds for fading in shadow. the cosine of the angle between the
// two vectors is mapped to the [0,1] range. these thresholds mark the

// points within that threshold that the shadow is faded in. Tweak these
// to change the range over which the shadow is faded in/out.

static const float fShadowStart = 0.45; // start fading at ~63 degrees
static const float fShadowStop = 0.95; // full shadow at ~18 degrees

95| Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

// smoothstep to fade in/out shadow. Dot product is scaled/biased
// from [-1,1] into [0,1] range. threshold terms determine where
// the fade in/out boundaries are. we call this "exposure to sun"
// because it approximates how exposed you are to the sun and
// thus how much shadow should be allowed.
float fAngle = dot (vDominantLightDir,g vSHLMSunDirectionWs)*0.5+0.5;
float fExposureToSun = smoothstep (fShadowStartThreshold,
fShadowStopThreshold,
fAngle) ;
// amount of dominant light to remove
float fPercentShadowed = lerp(1, fShadow, fExposureToSun);

return fPercentShadowed;
}
//
// Compute shadowed diffuse lighting. We pass the dominant light direction
// and dominant light color back to the caller so that it may be used for
// specular/glossy calculations. The adjusted shadow factor is passed back
// in the alpha channel of the returned vector so that it may be used for
// shadowing any specular/glossy shading terms that the caller computes.

!/
float4 ComputeDiffuse (float3 vPositionWS, float3 vNormalWS, float fShadow,
out float3 vDominantLightDir,

out float3 cDominantLightColor)

// compute a texture coord for the light map
float2 vUV = ComputeLightMapUV(vPositionWS) ;

// get the lighting environment
float4 vSHLightingEnvR[3], vSHLightingEnvG[3], vSHLightingEnvB[3];
GetLightingEnvironment (vUV, g sSHLMBilinear,
vSHLightingEnvR, vSHLightingEnvG, vSHLightingEnvB,
cDominantLightColor, vDominantLightDir);

// build basis for lambertian reflectance function
float4 vSHLambert[3];
SHEvalDirection (vNormalWS, vSHLambert);

// the lambertian SH convolution coefficients for the first three bands
float3 vConvolution = float3(1.0, 2.0/3.0, 1.0/4.0);

vSHLambert[0] *= vConvolution.xyyy;

vSHLambert[1] *= vConvolution.zzzz;

vSHLambert[2] .x *= vConvolution.z;

// apply shadow to the direct dominant light
float fShadowFactor =
ComputeDirectLightingShadowFactor (vDominantLightDir, fShadow);
cDominantLightColor *= fShadowFactor;
// direct diffuse lighting (from dominant directional light)
float3 cDiffuse =

max(0, dot(vNormalWS,vDominantLightDir)) * cDominantLightColor;

// diffuse light from lighting environment (dominant light removed)

cDiffuse.r += dot(vSHLambert[0], vSHLightingEnvR[0]); // DC & linear
cDiffuse.g += dot(vSHLambert[0], vSHLightingEnvG[O0]);

cDiffuse.b += dot(vSHLambert[0], vSHLightingEnvB[O0]);

cDiffuse.r += dot(vSHLambert[1l], vSHLightingEnvR[1]); // quadractic
cDiffuse.g += dot(vSHLambert[l], vSHLightingEnvGI[1l]);

cDiffuse.b += dot(vSHLambert[l], vSHLightingEnvBI[1l]);

cDiffuse.r += vSHLambert[2].x * vSHLightingEnvR[2].x;

cDiffuse.g += vSHLambert[2].x * vSHLightingEnvG[2].x;

cDiffuse.b += vSHLambert[2].x * vSHLightingEnvB[2].x;

cDiffuse = max(0, cDiffuse);
return float4 (cDiffuse, fShadowFactor);
}

Listing 10. HLSL shader code implementing the spherical harmonic light map techniques described in this
section.

9% | Page

Chapter 3: March of the Froblins

3.7 Conclusion

In this chapter we covered various aspects of simulating and rendering large crowds of autonomous
characters using the massive parallelization available on the latest commodity GPUs. We described
methods for computing dynamic path finding, using global model and local avoidance for handling
character-to-character collisions. In our large-scale environment with thousands of highly detailed,
intelligent characters, the Froblins (frog goblins), are concurrently simulated, animated and rendered
entirely on the GPU. The Froblins demo contains 3000 characters, rendering at various levels of details,
ranging from coarsest level at only 900 polygons all the way to over 1.6M triangles at extreme close-ups.
We render thousands of animated intelligent characters from a variety of viewpoints ranging from
extreme close-ups to far away “bird’s eye” views of the entire system. Our system combines state-of-the-
art parallel artificial intelligence computation for dynamic pathfinding and local avoidance on the GPU,
massive crowd rendering with LOD management with high end rendering capabilities such as tessellation
for high quality close-ups and stable performance, terrain system, cascaded shadows for large-range
environments, and an advanced global illumination system. We are able to render our world at
interactive rates (over 20 fps on ATl Radeon® HD 4870) with staggering polygon count (6 — 8 million
triangles on average at 20-25 fps), while maintaining the full high quality lighting and shadowing solution.

3.8 Acknowledgements

We would like to thank all the creative, hard-working and over-all fun folks who contributed to this demo.
Specifically, Abe Wiley, our lead artist, deserves a special mention for all his patience, diligence and
painstaking attention to detail. The talented artists from Chaingun Studios and Exigent were also
absolutely crucial to the success of this project, and we’d like to thank them for their contributions. We'd
also like to thank the following folks from AMD Game Computing Group: Dan Abrahams-Gessel, Justin
Hensley, Jason Yang and Raja Koduri, as well as AMD graphics driver developers who helped stabilize
bleeding-edge advanced features, specifically, Tim Kelley and Matt Johnson. The GPU tools group was
extremely helpful by working together on a tool specifically designed for robust generation of
displacement maps with tessellation in mind, and we’d particularly like to thank Peter Lohrmann and
Budirijanto Purnomo for their work on this tool.

97 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

3.9 References

[AHHO8] AKENINE-MOELLER, T., HAINES, E. AND HOFFMAN, N. 2008. Real-Time Rendering. 3%ed. AK. Peters,
Ltd.

[AMDGMMO08] AMD GPUMeshMapper. 2008.
http://developer.amd.com/gpu/MeshMapper/Pages/default.aspx

[AKDSO4] ANNEN, T., KAauTz, J., DURAND, F., AND SEIDEL, H. P. 2004. Spherical Harmonic Gradients for Mid-
Range lllumination. Rendering Techniques 2004: Eurographics Symposium on Rendering.

[CHENO8] CHEN, H. 2008. Lighting and Material of HALO 3. Game Developer’s Conference (San Francisco).

[EVErITTO1] EveritT, C. 2001. Interactive Order-Independent Transparency. Technical report, NVIDIA
Corporation.

[FIORINI SHILLER98] FIORINI, P., AND SHILLER, Z. 1998. Motion Planning in Dynamic Environments Using Velocity
Obstacles. International Journal on Robotics Research 17(7), 760-772.

[GEEO8] GEE, K. 2008. Direct3D® 11 Tessellation. Presentation. Gamefest 2008, Seattle, WA, July 2008.

[GKM93] GREENE, N., Kass, M., AND MILLER, G. 1993. Hierarchical Z-buffer visibility. In SIGGRAPH ’93:
Proceedings of the 20th annual conference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, pp. 231-238.

[HARADAO7] HARADA, T. 2007. Real-Time Rigid Body Simulation on GPUs. In GPU Gems 3, Nguyen, H. ed.,
Addison-Wesley.

[Hu08] Hu, Y. 2008. Lightmap Compression in HALO 3. Game Developer’s Conference (San Francisco).

[JEONGWHITAKERO7A] JEONG, W.-K, AND WHITAKER, R.T. 2007. A Fast Eikonal Equation Solver for Parallel
Systems. SIAM conference on Computational Science and Engineering 2007, Technical Sketches

[JEONGWHITAKERO7B] JEONG, W.-K, AND WHITAKER, R.T. 2007. A Fast Iterative Method for a Class of Hamilton-
Jacobi Equations on Parallel Systems. University of Utah School of Computing Technical Report UUCS-
07-010.

[KLEINOS8] KLEIN, A. 2008. Introduction to the Direct3D® 11 Graphics Pipeline. Presentation. Gamefest 2008,
Seattle, WA, July 2008.

[MHRO7] MiLLAN, E., HERNANDEZ, B., AND RupOMIN, |. 2007. Large Crowds of Autonomous Animated
Characters Using Fragments Shaders and Level of Detail. ShaderX’ : Advanced Rendering Techniques.
Engel, W. (Editor), Charles River Media, December 2006.

[SLoANOS8] SLoAN, P. 2008. Stupid Spherical Harmonic (SH) Tricks. Game Developer’s Conference (San
Francisco).

[TATARCHUKO8] TATARCHUK, N. 2008. Advanced Topics in GPU Tessellation: Algorithms and Lessons Learned.
Presentation. Gamefest 2008, Seattle, WA, July 2008.

[TCPO6] TREUILLE, A., COOPER, S., AND Poprovi¢, Z. 2006. Continuum Crowds. ACM Trans. Graph. 25, 3 (Jul.
2006), pp. 1160-1168, Boston, MA.

[TsiTsIkLIS95] TsiTsikLS, J. N. 1995. Efficient Algorithms for Globally Optimal Trajectories. IEEE Transactions
on Automatic Control 40, 9 (Sept.), 1528-1538.

[VBPS*08] VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND LIN, M. 2008. Interactive Navigation of
Multiple Agents in Crowded Environments. In Proceedings of the 2008 Symposium on interactive 3D
Graphics and Games (Redwood City, California, February 15 - 17, 2008). SI3D '08. ACM, New York, NY,
139-147.

98 | Page

Chapter 3: March of the Froblins

[WWS*07] WANG, L., WANG, X., SLOAN, P., WEI, L., TONG, X., AND GuO, B. 2007. Rendering from Compressed
High Dynamic Range Textures on Programmable Graphics Hardware. ACM Symposium on Interactive
3D Graphics and Games.

[YCP*08] YEH, H., CURTIS, S., PATIL, S., VAN DEN BERG, J., MANOCHA, D., AND LIN, M. 2008. Composite Agents. In
the proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2008.

[ZSXL06] ZHANG, F., SUN, H., Xu, L., AND LUN, L. K. 2006. Parallel-split shadow maps for large-scale virtual
environments. In VRCIA ’06: Proceedings of the 2006 ACM international conference on Virtual reality
continuum and its applications, ACM, New York, NY, USA, pp. 311-318.

9 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Appendix A

// Solve for roots of quadratic equation
float2 EvalQuadratic(float a, float b, float c)
{
float2 roots;
roots.x = (-b + sqgrt(b*b-4*a*c))/(2*a);
roots.y = (-b - sqgrt(b*b-4*a*c))/(2*a);

if(b*b <= 4*a*c)
{

roots = float2(INF-1, INF-1);
}

return roots;

}

// Solve for the the potential of the current position based on the
// potential of the neighbors and the cost of moving here from there. Refer
// to Jeong "A Fast Eikonal Equation Solver for Parallel Systems" 2007.
float QuadraticSolver (float fPhiMx, float fPhiMy,

float fCostMx, float fCostMy)
{

float a = fPhiMx;

float b = fPhiMy;

float ¢ = fCostMx;

float d = fCostMy;

float al = c¢c * ¢c + d * d;

float bl = -(2 *a *d*d+ 2 *Db *c * c);

float cl =a *a *d*d+b *b *c*c-c*c*d=*d;

float2 roots = EvalQuadratic(al, bl, cl);
float fTmp = max(roots.x, roots.y);

return fTmp;

}

float EvaluateFiniteDifference(float fPhi, float fCost,
floatd4 vPhi, float4 vCost)
{
float fPhiX, fPhiY, fCostX, fCostY;
float fPhiN = vPhi[0], fPhiS = vPhi[l], fPhiW = vPhi[2],
fPhiE = vPhi[3];
float fCostN = vCost[0], fCostS = vCost[l], fCostW = vCost[2],
fCostE = vCost[3];

//====Calculate upwind direction for X====
if(£PhiW < INF || fPhiE < INF)
{
// Figure out if west or east are "cheaper"
if(fPhiW + fCostW <= fPhiE + fCostE)
{
fPhiX fPhiwW;
fCostX = fCostW;

}

else

{
fPhiX = fPhiE;
fCostX = fCostE;

}
Listing 11. HLSL code for iterative eikonal solver

100 | Page

Chapter 3: March of the Froblins

//====Calculate upwind direction for Y====
if (£fPhiN < INF || fPhiS < INF)
{

bInvalidY = false;

// Figure out if north or south are "cheaper"
if (£fPhiN + fCostN <= fPhiS + fCostS)
{
fPhiY = fPhiN;
fCostY = fCostN;
}
else

{

fPhiY fPhisS;
fCostY = fCostS;

}

//Save for new potential in this location by solving quadratic
float result = 0;

result = QuadraticSolver (fPhiX, fPhiY, fCostX, fCostY);
result = min(min(fPhiY + fCostY, fPhiX + fCostX), result);

// Potential should only be decreasing
result = (result > fPhi) ? fPhi : result;
}

float4 EikonalSolverIteration ()

{
float4 vCurPhi = tPhiMap.SamplelLevel (sPhiPoint, v.vUV, 0);
float4 vCurCost = tCostMap.Samplelevel (sCostPoint, v.vUV, 0);

// Fetch potential values. Fetches out of domain = INF

float4 vPhiN = tPhiMap.Samplelevel (sPhiPoint, v.vUV, 0, int2(0,-1));
float4 vPhiS = tPhiMap.Samplelevel (sPhiPoint, v.vUV, 0, int2(0, 1));
float4d vPhiW = tPhiMap.SamplelLevel (sPhiPoint, v.vUV, 0, int2(-1, 0));
float4 vPhiE = tPhiMap.Samplelevel (sPhiPoint, v.vUV, 0, int2(1, 0));
// Fetch potential values. Fetches out of domain = 10000

float4 vCostN = tCostMap.Samplelevel (sCostPoint, v.vUV, 0, int2(0,-1);
float4 vCostS = tCostMap.Samplelevel (sCostPoint, v.vUV, 0, int2(0, 1);
floatd4 vCostW = tCostMap.Samplelevel (sCostPoint, v.vUV, 0, int2(-1, 0);
float4 vCostE = tCostMap.Samplelevel (sCostPoint, v.vUV, 0, int2(1, 0);

float4 vPhi;

[unroll]
for(int i = 0; i < 4; i++)
{

vPhi[i]

EvaluateFiniteDifference(vCurPhi[i], vCurCost[i],
float4d (vPhiN[i], vPhiS[i], vPhiW[i], vPhiE[i]),
floatd (vCostN[i], vCostS[i], vCostW[i], vCostE[i]))
}

return vPhi;

Listing 11 (cont.) HLSL code for iterative eikonal solver

101 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Chapter 4
Using Wavelets with Current and
Future Hardware

Mike Boulton®
Rare/MGS

Figure 1. Example of using wavelets to compress images

8 .
mboulton@ microsoft.com

102 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

4.1 Introduction

Much of the data we wish to encode over a surface (such as lighting data) is not
homogeneous in complexity®, and is becoming less homogeneous as we pursue higher
graphical fidelity.

This data is typically stored using fixed compression methods available in hardware
(such as DXT, for example). The main advantages with this approach are that
decompression can be performed quickly by the hardware, and also that the size of the
data, when compressed, is predictable.

However, this approach also represents a growing inefficiency, since areas requiring a
high density of data are under-represented, and vice-versa. In addition, current fixed-
compression formats are generally limited to 8 bits per channel.

For applications such as lighting, the problem can be addressed to a certain extent by
modifying the injective function which maps the data onto the surface (typically
referred to as the UV Mapping Function) to map a greater density of texels onto areas of
high data complexity, and to also map texels more sparsely over areas of low
complexity. Traditionally, this is achieved by either warping the mapping function, or
splitting the data up into discrete complexity bands, and uniformly mapping across
those bands at a pre-set band density.™

There are problems with this approach, however — in particular, when warping the
mapping function it is often hard to avoid unpleasant mapping characteristics on the
scale of an individual triangle.

Ideally, one would like a variable compression scheme which can focus more on the
areas of importance, and less on the areas where not much is happening. This is where
wavelets can help!

4.2 An Introduction to Wavelets

Wavelets are mathematical functions formed from scaled and translated copies of a
single waveform (referred to as the mother wavelet). They allow a function to be
decomposed into a superposition of different frequency components, which can be
operated on individually (this is referred to as multi-resolution analysis).

° In other words, some areas require us to store considerably more data than others for consistent
quality.
¥gee [Hu08] for example.

103 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

A function can be put into wavelet form by the use of a Wavelet Transform, and can be
translated back into the original function via the inverse transform (analogous to a
Fourier transform).

Wavelets as basis functions have several significant advantages over the standard
Fourier representation (and its analogue on the sphere, spherical harmonics). They are
much better at representing functions with discontinuities or sharp changes, functions
that are non-periodic, and in many cases have local support, which can permit efficient
windowed modifications of the data set. They are a system of hierarchical refinement,
and as such can sparsely represent localized areas of low contrast within the data.™* At
the same time, they can be orthogonal.

A wavelet transform can be either continuous or discrete, and can represent data of any
dimensionality. In general, we will be interested in discrete two-dimensional wavelets,
in particular 2D non-standard Haar.*

See [SDS95] for a simple introduction to wavelets, and how the non-standard 2D Haar
basis is constructed.” For a more advanced discourse, refer to [DAUBECHIES92].

Figure 2. The vertical, horizontal and diagonal wavelets of non-standard 2D Haar.

Figure 2 shows a depiction of the three different wavelet basis types for non-standard
2D Haar. The white areas represent +1, and the black areas -1. The scaling function is
simply a value of +1 defined over the whole domain.

" Since in areas of low contrast, there is very little that actually requires refinement. This is what
facilitates compression.

2 Haar is the simplest wavelet set, and can exhibit blocky artefacts when higher compression is required.
This is in general less of a problem for operations such as integration over a hemisphere, except in the
case where you have a BRDF whose specular cover is comparable to the cover of the finest wavelet.
 Note that we prefer the non-standard 2D Haar basis over the standard basis because each non-standard
basis function has square support which in general produces a sparser representation for the kind of data
we wish to compress.

104 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

As an example to aid intuition, consider a grid of data with resolution 2" x 2", where
each cell within the block contains a single real number. We represent the data with
this wavelet basis as a tree (commonly referred to as a wavelet tree), which in this case
has a structure very similar to a quad-tree.

How many wavelets does this grid require in order to be losslessly represented? There
is one of each wavelet from figure 2 at the root level, covering the whole grid. These
three wavelets tell you how to refine the scaling function down to a 2 x 2 block (where
each element has dimensions 2" x 2¥1). The coefficients are stored in the root via a
real triple {c,, cx, cq}."* At this stage, each element of the newly-generated 2 x 2 block
contains the average of all cells contained within it.

The root has four children, one for each 21 % 2% block. These children each have their
own real triple {c,, ¢, c4}, which is used to refine each 2% x 2™ plock down to four
blocks each of resolution 2V2 x 2V (see figure 3).

—

j\

S

o1 IS

|

Figure 3. The first few levels of subdivision.

This is continued recursively until the whole grid is represented on the level of an
individual cell. Note that this is conceptually very similar to traversing a mip-map
pyramid, where each level has been generated using a box filter on the preceding level.

1 Following the convention in [DAUBECHIES92] — ¢, is the coefficient for the vertical wavelet, ¢, the
horizontal, and ¢, the diagonal.

105 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008

N. Tatarchuk (Editor)

So the number of nodes (starting from the root) is 1 + 4 + 16 + ... + 2" x 2" and each
node contains three wavelets. Adding this up, and including the single value used to
modulate the scaling function, you have exactly 2" x 2" terms, which are used to scale

2" x 2V — 1 wavelets, and a single scaling function.

See listing 1 for pseudo-code to calculate the triple {c,, ¢y, c4} for a node, and listing 2 for

pseudo-code to retrieve the refinement value for a supplied coordinate.

void CalculateNodeCoefficients(int xMin,

{
int xHalf =
int vyHalf =

int yMin,

(xMin + xMax)>>1;
(yMin + yMax)>>1;

// calculate grid average over node cover

float nodeAv =

GetAverageWithinGridRegion (xMin,

// calculate grid average over cover of each child

// note "UL" stands for
float quadrantAvUL
float quadrantAvUR
float quadrantAvLL
float quadrantAvLR

"Upper Left",

etel.

GetAverageWithinGridRegion (
GetAverageWithinGridRegion (
GetAverageWithinGridRegion (
GetAverageWithinGridRegion (

// calculate wavelet coefficients for this node

float
float
float cd =

}

int xMax,

int yMax)

yMin, xMax, yMax);

xMin, yMin, xHalf,
xHalf, yMin, xMax,
xMin, yHalf, xHalf,
xHalf, yHalf, xMax,

cv = nodeAv - 0.5f* (quadrantAvUL + quadrantAvLL) ;
ch = nodeAv - 0.5f* (quadrantAvUL + quadrantAvUR) ;
nodeAv - 0.5f* (quadrantAvUL + quadrantAvLR) ;

Listing 1. Pseudo-code to generate the wavelet coefficients for a node.

// Get refinement for an
// xMin, yMin to xMax,

void GetNodeRefinement (
{

float refinement =
int xHalf =
int yHalf =

// vertical contribution
refinement +=

(%,
yMax and wavelet
// Note that this assumes that
int x,

(x < xHalf)

0.

// horizontal contribution

refinement +=

// diagonal contribution
refinement +=

}

(y < yHalf)

((x < xHalf)

Y)

? —Ccv :

? -ch

coefficients cv,

(x, y) is contained within

int y)

0f;

(xMin + xMax)>>1;
(yMin + yMax)>>1;

CvVv;
g @lag
A (y < yHalf)) ?

eel g =@eelg

within a particular node with bounds

ch and cd.
the bounds.

yHalf);
yHalf);
yMax);
yMax) ;

Listing 2. Pseudo-code to calculate a refinement value given an enclosed (x,).

Note that the refinement value needs to be scaled according to the area of the
corresponding wavelet. So if the root has scale 1, the children of the root have scale %
since they cover a quarter of the area (similarly, the grandchildren of the root would

have scale one sixteenth).

106 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

Compression occurs at this stage by applying non-linear optimization to the wavelet
terms. There are several ways to do this — the simplest being to discard any wavelet
with a coefficient whose magnitude is below some threshold (referred to as unweighted
selection). This can be shown to minimize the squared error, but that is not always what
you want to do.”

4.3 Wavelet Applications

Wavelets have many potential applications for real-time rendering. Below is a (far from
exhaustive) list of potential applications.

e Real-time shader texture decompression. A texture representing arbitrary
scalar data (an image or spherical harmonic coefficients for instance) can be
compressed lossily into a wavelet tree, which is then compactly represented
using a line texture. Given a (u, v) in the pixel or vertex shader, the value of the
original texture at that location can be recovered in real-time using unrolled
traversal within the shader.’® In addition, arbitrary filter operations can be
performed hierarchically between the image and a filter kernel (note this
includes the bilinear filter kernel). This will be discussed in greater detail in
section 4.4.

e Real-time double and triple product integration for lighting. Following from
[NRHO3] and [NRHO04], wavelets can be used to encode and compress the
elements of the lighting integral. Choosing a wavelet set that is orthogonal (such
as non-standard 2D Haar) allows a double-product integral to be decomposed
into a sparse list of dot product operations. As described in [NRHO4], we can
extend this to triple product integration, by describing how to derive the tripling
coefficients via a simple (and small) set of rules. In section 4.5 we will discuss
how to implement these operations on current hardware, and also discuss an
approximation which allows the BRDF to be represented analytically, and its
contribution to the integral to be approximated in real-time.

e Static shadow maps. Shadow maps that are either entirely static, or mainly
static, can be represented in wavelets, potentially with a high degree of
compression. Depth-values are queried in the same way as the texture
compression described above. Occasional, local changes to the shadow map
could be incorporated by only considering those wavelets whose cover intersects

!> See [NRHO3] for a discussion of three methods for non-linear lighting approximation.
® As will be discussed in part 4.4, a 1024° grey-scale image with sub-blocks of size 16> can be
decompressed on the Xbox 360™ at a resolution of 1280x720 at over 500Hz.

107 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

the area of change. This demonstrates the value of having a basis set with local
support.

e Displacement map compression. Similarly, displacement maps can be wavelet
compressed. This can be used for e.g. morph target (or blend-shape)
compression — in the case of many morph targets applied to a single mesh,
typically only a modest subset of the vertices are significantly displaced. Wavelet
compression would heavily compress areas of low change, and represent areas
of high change to an arbitrary level of precision. Additionally, wavelet
compression is a useful method for compressing very large displacement maps
for e.g. terrain representation — here (similar to morph targets) you often have
smallish areas of high frequency change scattered around, with smooth low-
frequency data in-between. With reasonable compression ratios, this would
allow a single texture (here storing a wavelet tree rather than the displacement
values exactly) to span areas much larger than the maximum texture resolution
that current commodity graphics hardware would allow, and might allow for
easier streaming and LOD methods.

e Easier static and dynamic texture packing. Automatic generation of a UV
mapping function over an arbitrary mesh is a tricky problem, made more so
when additional mapping characteristics are required, such as distortion
minimization, and trying to match texels up across atlas boundaries.”” In
addition to these requirements, we also want to maximize total texture usage in
order to efficiently use available memory. There are several programs available
which can generate good UV mappings,18 but in general there are still cases
where mappings with poor texture usage are generated. Wavelet image
compression will heavily compress the unused gaps between polygons, and can
produce good results even for near-lossless compression.19 For dynamic packing,
one could adopt a scheme where new texture space was allocated in large blocks
with no effort to effectively tile with existing atlases. When filled, this block
would be wavelet compressed.

e Geometry representations. A deformable object with associated UV mapping
can have the deformations represented by wavelets over the surface. One
possible approach would be to allow a fixed upper limit on the number of
wavelets to be used (to control memory usage, perhaps). Space could be made
for new deformations by removing the oldest existing high-frequency wavelets —
so the broad shape of older deformations could be maintained for a longer time,
at the expense of the finer details. Additionally, the multi-resolution

7 See [HLSO7] for a good reference on mesh parameterization.

'® UVAtlas in the DirectX® SDK June 2008 for instance.

% Because the unused gaps will generate lots of zero-valued wavelet coefficients, and they can be freely
pruned without compromising reconstruction fidelity.

108 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

representation could be used to directly update the centre of mass and moment
of inertia of the object, potentially at a different level of accuracy. This suggests
that data represented in a single multi-resolution form is easier to use across
different systems with varying precision requirements.

4.4 Real-Time GPU Image Decompression

In this section, a method for real-time wavelet decompression of an 8-bit monochrome
texture by a vertex or pixel shader is described.’® Note this can easily be extended to
color textures by storing each channel as a separate wavelet tree,”* and also can be
extended to handle any data type (float for example).

In section 4.2, the generation of a wavelet tree from a block of data was discussed.
Given a texture, we firstly partition it into fixed-size sub-blocks. For each sub-block, we
generate a wavelet tree. This tree is pruned recursively as follows:

1. Flag every node which is a leaf and where the absolute value of each of the three
wavelet coefficients falls below a user-defined threshold.

2. For every node which is not a leaf, and which has all four children flagged, prune
all four children.

3. Repeat procedure until no further pruning can be performed.

Note that a node is only pruned if all three associated siblings are also pruned. This is a
concession to allow easier tree indexing on the GPU, and does not add a significant
overhead to total storage requirements. The scheme can be extended to support more
fine-grain pruning at the cost of a more complicated traversal process.

The method used to prune a tree can be entirely user-defined, and can easily be
extended to incorporate an importance mask — for example, there could be areas of the
data which, although lower in contrast, the user still wishes to preserve at a greater
fidelity, perhaps losslessly (and vice-versa). The importance mask value can be used to
modify the pruning function on a per-texel level.

Each tree is stored linearly and breadth-first, with each node packed into a single ARGB8
texel,” where {r, g, b} stores the quantized and windowed wavelet coefficients {c,, cp,
cq} and {a} stores the linear offset to the first child of this node, if a child exists.

2% see [DCHO5] for a description of a similar approach.

?! Although you might consider an HSV (or YCbCr) encoding rather than RGB, and store hue and saturation
at a coarser level than value. See http://en.wikipedia.org/wiki/Jpeg2000.

?2 The actual texture format used is D3DFMT LIN Q8W8V8US8 since this automatically maps the wavelet
coefficients onto [-1,1] which saves a few shader instructions.

109 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

All of the trees are then consecutively packed into a single line texture.

We choose to firstly partition the image into sub-blocks (in this case, sub-blocks of
resolution 16 x 16 texels) for two reasons. Firstly, it allows each sub-block wavelet tree
to lie within at most two texture cache lines,?® and secondly it allows a single unsigned
8-bit integer to be used per node to encode the tree structure.

In addition, we require a texture at the resolution of one sub-block per texel to encode
the scaling function coefficient, and record the offset from the start of the line texture
where the associated sub-block wavelet tree begins. See Figure 4 for more details.

@00 WAVELET TREE FOR SUB-BLOCK © 00

WAVELET TREE LINE TEXTURE

SUB-BLOCK TEXTURE

SUB
BLOCK

(@)
(@)
(@)

Figure 4. Each texel in the sub-block texture contains an offset to the wavelet tree.
So given a (u, v) within the unit square, we reconstruct the value as follows:
1. Fetch the sub-block texel containing the given (u, v).

2. Use the wavelet tree offset to point to the start of the sub-block wavelet tree in
the wavelet tree line texture.

> This is important for performance since we are traversing a tree on the GPU, which in general is not a
good fit for fetch coherency and texture cache usage.

110 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

3. Perform depth-first traversal down to the leaf containing the given (u, v)
accumulating the contribution made by each wavelet node along the way. As
soon as traversal completes, attempt to jump to the end of the shader.?*

4. Add the result to the scaling term contained within the sub-block texel.

See Listing Al in the appendix for an optimized Microsoft Xbox 360™ microcode shader
which performs these steps.

Figure 5 shows the results for three different cases on a monochrome 1024 texture.

1. Reference case. Here we have a standard uncompressed texture rendering via a
single texture fetch. Memory size (with mip-maps) is 2MB.

2. Wavelet compressed with cut-off value of 0.05. The total memory requirement
for the wavelet tree line texture, and sub-block texture is 249KB (representing
around an 8:1 compression ratio). It is running full-screen at 1280 x 720 with a
speed of 579fps.*

3. Wavelet compressed with cut-off value of 0.082. The total memory requirement
is 157KB (13:1), and it runs with a speed of 622fps.

Notice that as the cut-off is increased, the frame rate also increases. This is because the
shader attempts to perform a dynamic branch to the end of the program whenever it
encounters a leaf prematurely. For higher compression, more premature leaves will be
encountered and so this will yield a greater benefit.?®

Because of the refinement-based nature of wavelets, a separate mip-map chain is not
required, since by simply terminating traversal prematurely the box-filtered mip-map
value at that level is obtained.

See figure 6 for a zoomed-in comparison. Note that at higher compression ratios, the
blocky artifacts discussed previously are evident in areas of lower contrast. Notice
however that even at these high compression ratios, fine high-contrast detail is still
represented to a high degree of accuracy (note particularly the collar and buttons).

** We would ideally also want to terminate shader traversal if screen-space minification was encountered.
> Note that this frame rate also includes a small amount of unrelated system overhead, such as clearing
and resolving screen buffers, etc.

% On the Xbox 360™, the GPU operates on vectors of 64 pixels wide. For a dynamic branch to be
effectively executed (and the performance benefits gained), every element of the vector must follow the
same branch path.

111 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

:_.‘ - 2

Figure 5; Cmparison between reference, cut-off 0.05 and cut-off 0.082.

112 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

B : i 3

Figure 6. Zoomed-in comparison for all three cases.

An associated user-generated importance mask could improve the overall quality of the
most compressed case, whilst maintaining the same compression ratio. In particular, if
areas around the arms and face of both figures were increased in relative importance a
more agreeable result might be obtained.

However, for general images this technique does not often produce results significantly
better than DXT5A, for example (which has a fixed compression ratio of 8:1), and for
many image applications the blocky artifacts produced by the 2D Haar basis would not
be acceptable. Image compression does serve as a good method for demonstrating
wavelet compression intuitively, but it is argued that the practical application of real-
time wavelet texture decompression is to textures storing general data, such as lighting,
which is not of such a homogeneous nature.

For better wavelet compression of general images, more sophisticated wavelets are
typically used, for example the Cohen-Daubechies-Feauveau wavelet (which is part of
the JPEG2000 standard®’). However, due to the complexity of this wavelet, real-time
decompression at interactive rates is not really feasible on current hardware.

Hierarchical filtering between multiple wavelet-compressed images can be efficiently
performed. In addition, filtering between an image and an analytically-defined kernel
can be performed (the bilinear filter kernel, for instance”®). The only caveat here is the
case where a kernel overlaps a sub-block boundary. This can be addressed by splitting
the process up into multiple passes, based on the size of the smallest kernel, or
alternatively by overlapping the sub-blocks slightly at a slight cost to overall
compression.? Here, it is often better to encode the tree in a depth-first manner, rather
than breadth-first.

?7 see http://en.wikipedia.org/wiki/Jpeg2000 for example.

%% There are at least two different ways to approach bilinear filtering — one would be to perform four
individual fetches using the shader in Listing A1, and apply the bilinear weights. The other would be to
perform a genuine pruned depth-first tree traversal between the image and a per-pixel defined bilinear
filter kernel. See section 4.5.

* Note this becomes less feasible the larger the filter kernel. The bilinear kernel would only require an
overlap border of width one, however.

113 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

This is essentially what is being done when calculating the double-product integral for
relighting — here, we are performing a filter between the image over the sphere
representing the incoming light, and the image over the sphere representing the local
visibility and diffuse BRDF (this is discussed in more detail in the next section).

See figure 7 for an example of wavelet-compressed textures containing spherical
harmonic coefficients of order 0 and 1 (with resolution 10242). In this case, DC and
linear spherical harmonic coefficients were stored as 16-bit floats, and wavelet
compressed.

114 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

CUT-OFF Overall pruning DC pruning Linear pruning
0.00008 94.0% 94.2% 93.9%
0.00016 95.2% 95.5% 95.1%
0.0004 97.9% 98.0% 97.8%

Table 1. Pruning results for wavelet compression of spherical harmonic data.

Table 1 shows the percentage of total nodes in the wavelet tree pruned (using the
pruning method previously described) as a function of user-defined cut-off.

Here wavelets are able to provide a very high compression rate, whilst still maintaining
good reconstruction quality around areas important for perceived lighting fidelity (in
particular, note the soft area shadow around the base of the cuboids). Additionally, the
pruning approach used here is rather clumsy, and a better algorithm would likely allow
further compression.

Figure 7. Spherical harmonic lighting with wavelet-compressed coefficients. Clockwise
from top-left: Reference, cut-off 0.00008, cut-off 0.00016, cut-off 0.0004.

115 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

With spherical harmonic lighting on current hardware, one often needs to make a
difficult decision about whether to include quadratic SH terms, or just use linear, since it
is often the case that quadratic terms only make a noticeable difference to diffuse
lighting in certain places, although they require five more coefficients to be stored per
channel. A wavelet approach would help here, since the large portions of low-contrast
data stored in texture channels representing the higher bands would be automatically
compressed away.

Since linear spherical harmonics require twelve channels to represent a color signal, one
might think that performing twelve sets of wavelet decompression in the shader would
be unrealistic. However, with such high compression ratios, the typical decompression
traversal would not likely descend many levels from the root*° In addition,
representing the light in HSV format for instance would allow two of the trees
representing the color information to be coarser still.

4.5 Lighting

Orthogonal wavelets can be applied to the rendering equation in a very similar way to
spherical harmonics. The framework for performing double-product integration with 2D
Haar wavelets was introduced in 2003 by [NRHO3], and extended to triple-product
integration a year later [NRHO4].

Why use wavelets for lighting instead of spherical harmonics? Spherical harmonics
struggle to efficiently encode spatially-compact areas of high variability. As with the
Fourier series, they exhibit unpleasant ringing artifacts when trying to resolve sharp
discontinuities.*

In general, a wavelet approach to lighting requires 2 orders of magnitude fewer
coefficients [NRHO03], and makes the accurate calculation of high-frequency
environmental specular responses much more feasible at rates approaching real-time.

Additionally, wavelet bases with local support can in theory support staged, windowed
modifications to transfer functions. For instance, consider the situation where a wall
has had a hole punched in it (via a Boolean operation for instance). The hole would
allow light through, which would make many surrounding transfer functions within the
lightmap invalid. Although rebuilding those transfer functions in real-time might be very
costly, the multi-resolution nature of wavelets can allow this cost to be prioritized, and
the work spread over many frames. For instance, the highest priority work would likely
be updating those transfer functions which receive direct lighting through the hole.

* And since one typically encounters large, coherent patches of low frequency lighting, dynamic
predication is likely to work well.

31 This can be addressed to a certain extent at the cost of feature blurring. See [SLoANOS].

116 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

Further, one would like to focus on the low-frequency wavelets first, in order to quickly
carve out the approximate shape of the cast light. So only the low-frequency wavelets
whose cover intersects the volume that the hole subtends onto the sphere would be
initially considered.

The shape of the hole borders would then be refined, in addition to updating transfer
functions with no direct view of the hole, but which need to change in order to
compensate for additional bounce lighting.

This would allow worlds that are not entirely static to benefit from a full Gl solution,
provided that geometric changes could be controlled so as not to saturate the
hardware.

For fast-moving objects, the shadowing produced would have no latency, and a fidelity
that is related to surrounding lighting complexity and power of the hardware.

This would be a tricky thing to do with spherical harmonics, since the bases have global
support, and could not easily be prioritized in the above fashion.

However, two significant advantages that spherical harmonics do possess (that wavelets
do not) is rotational invariance and easy analytic rotation of the basis functions (at least
for low-order SH). This poses a significant problem when evaluating the rendering
equation for wavelet-compressed components.

For the case of the Phong BRDF>? for instance, one would like to rotate the diffuse
component of the BRDF (a cosine lobe) so that it is oriented along the normal, which
might be obtained from a high-frequency normal map which has many texels overlaying
a single lightmap texel. Similarly, one would like to rotate the specular component (a
cosine lobe raised to a power) so that it is oriented along the reflected light direction.

In [NRHO4] we see that this can be addressed by re-parameterizing the BRDF about the
reflected light direction, and then generating a set of samples over all remaining
variables. This dataset is then wavelet compressed using aggressive non-linear
optimization.a3 When performing rendering, the closest appropriate BRDF record is
selected from this compressed dataset.

We can also choose to encode the BRDF and visibility term in the local frame of the
lightmap texel (as described in [MHL*06]), and rotate the lighting environment into this

%2 Here the cosine term is included in the BRDF.

3 INRHO4] uses sampling of (6x64x64)x(6x128x128) for w, x w for Phong (where w, is the reflection
vector), which can handle specular powers up to 200. For 99% accuracy, only 0.1-1% of the terms are
required.

117 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

local frame.** The lighting environment is compressed at a sampling of orientations in a
similar manner to BRDF compression mentioned above. The calculation is then
performed in local space, instead of world space. This is a smart idea because the
lighting function is 2D, but the BRDF is 4D, so storage requirements for a compressed
sampling of lighting functions will generally be significantly less than the storage
requirements for a BRDF representation. However, since the visibility is locked into the
same frame as the BRDF, it can’t be rotated to correctly compensate for BRDF
orientation around high frequency normal map directions, which leads to incorrect
solutions.*®

We will later argue that a relatively simple isotropic BRDF (such as Phong) can be
treated as a separate entity, whose contribution to the integral can be naturally folded
into the traversal process, and approximated via importance sampling.

See [NRHO03] for a good direct comparison between spherical harmonics and wavelets
for lighting.>®

B(x, wp) = f f LG, 0DV (6 0)p (6, 0 w0) (@ -) dao,
0

Equation 1. The rendering equation for direct illumination.

See equation 1 for the rendering equation. Note that it is common practice to
incorporate the cosine term w - n into the BRDF p. The function L represents the
incoming lighting, V the local binary visibility, x is the point on the surface, n is the
normal, and w;, w, represent the incident and outgoing lighting direction respectively.

If the integrand is rearranged into the form AB, where A is to be varied with respect to
B, the integration is referred to as double product. Similarly, if arranged into the form
ABC where all three parameters vary with respect to each other, the integration is
referred to as triple product.

Since non-standard 2D Haar forms an orthogonal basis set, double-product integration
decomposes into a sparse set of dot product operations in exactly the same way as with
spherical harmonics, since all off-diagonal terms vanish (see equation 2).

% [IMHL*06] uses spherical wavelets (see [SCHRODERSWELDENS95]), with a basis set that is isomorphic to 2D
Haar.

% Since in order to get a bump-mapped response, the lighting environment is being rotated in the
opposite direction so that it has the correct orientation with respect to the fixed BRDF for each normal
from the normal map. You need to do this to the visibility function as well, but it is locked into the same
frame as the BRDF.

*In particular, see figures 2 and 3 in [NRHO3].

118 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

JJ Awrpe)an = || (Z a, (w)) ijeuj(w) do
= Zzaibj ﬂﬂ’i’i (w)¥;(w)dw = ZZ‘Sijaibj —A-B

i
Equation 2. Decomposition of double-product integration into a sparse dot product.

Unfortunately, triple-product integration doesn’t turn out to be quite this simple, since
in general the integration between three orthogonal basis functions does not
decompose to something as nice as the Kronecker delta, but a tripling coefficient
instead. Although in general these can be unpleasant to calculate,® [NRHO04] shows that
for 2D non-standard Haar they can be obtained via the application of a simple and small
set of rules.

We now consider implementing a few different approaches on hardware. Firstly,
consider the case where we would like to vary the lighting L with respect to the rest of
the integrand, and for simplicity assume that the BRDF is diffuse-only and that normals
are taken from the vertices, rather than a normal map.

A UV mapping function is generated for the lightmap. For every texel within the
lightmap, visibility information is generated over the sphere centered at the texel. Each
record on the sphere containing binary visibility information is then weighted by the
clamped inner product with the interpolated vertex normal.

This data is then projected onto a discrete decomposition of the sphere, such as a cube
map, and an appropriate correction term is applied if required,*® and then transformed
into a wavelet representation. Non-linear optimization is then applied.

The above process is typically performed using a ray tracer (or photon mapper), but in
this case can be performed very quickly to a reasonable approximation using
rasterization into a cube map on the GPU.**

Incoming environmental lighting (assumed to be effectively from infinity) is then
sampled onto the same sphere decomposition, for an appropriate set of values and/or
orientations. In this example, we generate environment lighting sets for Grace
Cathedral and also for a home-made red area light. Both environments are rotated one

* For spherical harmonics, these tripling coefficients are referred to as Clebsch-Gordan coefficients and
are rather complicated.

*% The cube map requires such a correction, since texels close to the corners subtend a smaller solid angle
than texels close to the center of a face. See [FuitaKanaiO4].

% Although if bounced lighting etc. is required, this isn’t really feasible. Additionally, if the spherical
decomposition is not a cube map itself, the data will need to be re-sampled appropriately.

119 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

full revolution around the X axis, with 256 equal angular subdivisions. Each frame is
compressed in the same way as the per-texel data.

Notice that the per-texel data and the environment lighting data are both defined in
world space. This allows direct integration without the need to rotate. It is very
important that both the environmental lighting and per-texel transfer functions are in
the same space, and use the same decomposition, since we require an exact
correspondence between associated wavelet bases.

When performing rendering, we firstly select the most appropriate record from the
environmental lighting data set, based upon current orientation. This record contains
three pruned wavelet trees, one for each color channel. Each tree is to be integrated
against the transfer function wavelet tree for each texel in the lightmap.

As discussed above, the per-texel double product integration that needs to be
performed decomposes to just a sum of dot product operations, where the dot product
is performed between the triple {c,, cn, c4} from each node in the first tree with the
triple {c’,, ¢’y, c’4} from the corresponding node in the second tree, if it exists.

Let A be the set of linearized indices of all nodes in the first tree. Let C_j be the triple {c,,
Ch, Cq} at node i (appropriately area-weighted), and S, be the scaling function coefficient
of the first tree. Similarly for the second tree (replacing A with B).

I=SASB+ Z C_}i‘éé
VieANB

Equation 3. Calculation of per-channel intensity.

See equation 3 for the calculation of per-channel intensity. Note that only the
intersection of both trees needs to be traversed for evaluation, since if any node in one
tree does not have a corresponding node in the other, there will be no contribution.*

So to perform this operation in a shader for instance, both trees need to be traversed in
parallel. Each node pair has their contributions added to the total (as in equation 3).
However, if the node currently being considered from one tree has children but the
corresponding node from the other tree does not, the evaluation function needs to be
able to jump over all children of this node (and their descendants) to the next sibling or
ancestor (which due to the pruning process described previously will always correspond
to the node from the other tree). Traversal is then continued as before until the root is
encountered.

** Note that this doesn’t directly follow from equation 3, since there could be a case where a parent was
pruned which had children that were not. However, our pruning process described earlier prevents this
from happening (and it’s actually fairly unlikely anyway).

120 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

We modify the process used in section 4 for image decompression as follows: the tree
is now depth-first, and stored into a line-texture as before. The alpha channel is now
used to store the tree level of the node immediately following the current node in the
line texture. If the next level is greater (in other words, the next node is a child of the
current node), a special jump node is stored in the next texel, between the current node
and the child. This node contains the linear offset (in texels) from the current node to
the next node on a level less than or equal to it (a sibling, parent or other ancestor).

If during traversal a disagreement is encountered concerning the next node, the jump
node is used to entirely omit the descendant branch of the offending tree.

See Listing A2 in the appendix for a microcode shader which performs these steps, and
figure 8 for a screenshot of a simple model (a torus over a plane) under both lighting
conditions. Here, the UV mapping was generated with a modified version of UVAtlas,
and the lightmap has a resolution of 128 texels. Each transfer function and
environment lighting function was first rendered into a 32 x 32 x 6 cube map, and then
compressed (one wavelet tree per cube map face). The transfer functions across the
whole lightmap required 8.7MB of total storage. We recorded an average frame rate of
over 250Hz was recorded*’, when using the red area light; and for Grace Cathedral just
over 40Hz.

Note that this implementation can be significantly optimized — it is currently bound by
texture cache stalls because of both jumping behavior, and also the fact that transfer
function wavelet trees of adjacent lightmap texels are stored a long way away from
each other. We discuss optimization approaches towards the end of the section,
including a method of interleaving trees representing localized data. Additionally,
predication behavior is quite poor since jobs of a similar size are not in general clustered
together.

** Again, running on the Xbox 360™.

121 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Figure 8. Real-time GPU double product integration between (left) a red area-light and
(right) Grace Cathedral lighting environment.

Figure 9. Three consecutive frames of Grace Cathedral as above, but with exaggerated
contrast.

Notice that even though not entirely optimal, there is a large performance difference
between grace cathedral and the much simpler red area light. This is because the red
area light has an extremely sparse wavelet representation when compressed, so the
intersection between this and any arbitrarily complicated transfer function is always
guaranteed to be small.

Returning to figure 8, notice the quality of the torus shadow on the left — this is well
beyond the resolving power of quadratic or cubic SH. However, under the smoother
lighting conditions such as Grace Cathedral represented in low dynamic range, the
results become much more comparable to low-order SH for diffuse lighting (which is
expected, see [[RAMAI\/lOORTHlHANRAHANOl]]).42 See figure 9 for three consecutive frames
where the contrast has been artificially increased — here, sharper shadow boundaries
are clearly visible.

*> Note that although the Grace Cathedral case looks a bit bland, it is quite convincing in motion. See
associated talk.

122 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

Next, consider how one might uncouple the BRDF from the visibility function. If instead
we fixed incoming light and local visibility, and chose to vary the BRDF using a user-
specified high frequency normal map for diffuse (and specular) bump-mapped response,
we would have another double-product integral, and could address the difficulty of
orienting the BRDF about arbitrary normals and view directions by adopting the
approach in [NRHO04], i.e. by compressing a sampling of BRDFs.*

However, consider the case where we remove the cosine from the double integral, and
rather than performing the integration according to equation 3, we instead perform a
point evaluation of the lighting and visibility wavelet tree in a similar way to the method
of image decompression discussed in the previous section. At each leaf, we multiply
each of the four refined values by an approximation of the BRDF over each individual
patch, and add the results to the accumulating total.

See Listing 3 for pseudo-code demonstrating this process.

—For each lightmap texel
—For each transfer function wavelet tree
—Starting from root node
Refine current quadrant value
Am I a leaf?

—Yes: Multiply current refinement value against approximation of BRDF integral
over current patch, and add this to the total.

-No: For each child
Does my cover intersect the BRDF kernel?
—Yes: Descend to child
—-No: Do not descend to child

Listing 3. Pseudo-code for approximating the integral between an analytically-defined
isotropic cosine-power kernel and a wavelet-encoded transfer function.

Triple product integration between two functions and the BRDF can also be
approximated in a similar way using double product integration, and again multiplying
the leaf values with the approximation of the BRDF integral over the patch.

How can the estimate be performed? For certain simple BRDFs, and certain spherical
decompositions,** direct analytic integration may be possible. Even more complicated

3 However, it might be a challenge to encode this in a cache-friendly way, especially for a noisy normal
map.

* The cylindrical mapping is a good one here, since each patch is just a spherical polar square.
Unfortunately, there is rather extreme distortion.

123 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

decompositions such as HEALPix* can permit relatively straight-forward analytic
integration over each patch (although it does get a bit fiddly in the polar regions, see the
appendix in [[GHB*05]]). The problem however is complicated by requiring that the
BRDF be clamped to zero over the negative hemisphere with respect to the normal
direction, and if the analytic integral is available in closed form, it will likely be
complicated and expensive to set up and evaluate.

Alternatively, an SRBF approach could be used. Here, we would approximate each
rectangular patch with a circle, and perform integration by using the inner product
between the patch center and the kernel center to index into a pre-computed integral
table.

A third option would be to approximate the integral by taking point samples over the
patch, and averaging their values, calculated analytically.

This is a very good fit for HEALPix, which is hierarchical and has a well-defined method
for nested indexing (see [GHB*05]). This allows easy generation of unbiased points
across any HEALPix pixel, and because of the hierarchical arrangement, it would be easy
to generate a quad-tree across the patch to better focus each inter-patch sampling
(effectively performing importance sampling). Additionally, HEALPix has a host of other
very attractive features, such as equal-area patches and low shape distortion that make
it ideally suited as a spherical decomposition for wavelet lighting.*®

To implement this approach on the GPU, one needs to have the concept of a stack to
avoid the need to look backwards in the tree to recover lower level values when
ascending from a child during traversal. To implement a scalar stack of fixed size 8, for
instance, is a simple operation in the shader requiring only two ALU cycles for a push or
pop, and 2 GPRs. Here however we require four floats per push/pop per tree, which can
only be performed by using a large block of GPRs and a list of mov instructions. See
figure 10 for three consecutive frames using this approach.

It also seems feasible to implement this on the CELL™ processor, where sections of tree
can be streamed into the local store. Fast reads from the local store during traversal are
likely to be better than trying to organize traversal to best utilize existing texture
caching methods. Additionally, job organization for best branching/predication
performance is likely to be easier.

* See [GHB*05] and [WANWONGO7].
*® As mentioned previously, spherical wavelets have also been used, with similar benefits. Here the basis

is triangle-shaped. See [MHL*06] and [SCHRODERSWELDENS95].

124 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

Figure 10. Three consecutive frames of triple-product integration using point sampling
for BRDF integral approximation, and a high-frequency normal map for diffuse lighting.

4.6 Conclusion

A practical introduction to wavelets has been provided, in addition to demonstrations of
real-world examples.

The author believes that methods of variable compression, and “shader tree traversal”
algorithms like the ones demonstrated, are likely to play an important role on future
hardware, to help better focus existing memory and bandwidth resources.

This approach also allows a generalization to occur concerning the methods we use to
parameterize data. “Voronoi diagram” texture maps and 2D tangent space BSP trees
are an interesting example of how we can move forward to “point cloud” type
representations of data, which not only provide a more honest account of the
underlying information, but also allow more ambitious methods for both its modifying
and handling.

Although this increased generality does seem to come with a certain “price of entry”, it

has hopefully been demonstrated that modest progress can be made even on current
hardware.

125 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

4.7 Appendix

126 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

127 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Listing A1. Xbox 360™ microcode shader for texture decompression.

128 |Page

Chapter 4: Using Wavelets with Current and Future Hardware

129 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

130 | Page

Chapter 4: Using Wavelets with Current and Future Hardware

(p0) mul rO.xy, r0, cl.w

jmp LO
N,

label L1

alloc colors
exece

mul oCO.xyz, rl.w, c255.x
+ movs oCO.w, c0.z

Listing A2. Xbox 360™ microcode shader for double product integration.

4.8 Acknowledgements

I’d like to thank Ash Henstock for helping me make figure 7. Additionally Kieran Connell
and Tom Grove for kindly permitting the use of their photograph in figure 5.

4.9 References

[HuO8] Hu, YaoHuA. 2008. Lightmap compression in Halo 3. Presentation, Game
Developer Conference, San Francisco, CA, February 2008

[GHB*05] Gorskl, K. M., Hivon, E., BANDAY, A. J., WANDELT, B. D., HANSEN, F. K., REINECKE, M.,
AND BARTELMANN, M. 2005.. HEALPix: A framework for high-resolution discretization
and fast analysis of data distributed on the sphere. The Astrophysical Journal,
622:759-771, April 2005.

[SDS95] SToLLNITZ, E. J., DEROSE, T.D. AND SALESIN, D.H. 1995. Wavelets for computer
graphics: A primer (part 1), IEEE Computer Graphics and Applications, Vol. 15, pp.
76-84.

[DAUBECHIES92] DAUBECHIES, |. 1992. Ten lectures on wavelets. SIAM publishing, 978-
0898712742.

[NRHO3] Ng, R., RAMAMOORTHI, R. AND HANRAHAN, P. 2003. All-frequency shadows using
non-linear wavelet lighting approximation. ACM transactions on graphics (Siggraph
2003 Proceedings), pp. 376-381, San Diego, CA.

[NRHO4] NgG, R., RAMAMOORTHI, R. AND HANRAHAN, P. 2004. Triple-product wavelet
integrals for all-frequency relighting. ACM transactions on graphics (Siggraph 2004
Proceedings), pp. 477-487, Los Angeles, CA, August 2004.

[HLSO7] HoRMANN, K., LEvY, B. AND SHEFFER, A. 2007. Mesh parameterization: Theory and
practice. ACM SIGGRAPH Course 27 course notes, San Diego, CA, August 2007.

[DCHO5] DIVERDI, S., CANDUSSI, N. AND HOLLERER, T. 2005. Real-time rendering with wavelet-
compressed multi-dimensional datasets on the GPU, Technical Report 2005-05,
UCSB.

131 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

[MHL*06] Ma, W.-C., Hsiao, C.-T., LEE, K.-Y., CHUANG, Y.-Y. AND CHEN, B.-Y. 2006. Real-time
triple product relighting using spherical local-frame parameterization. The Visual
Computer, Vol. 22, No 9-11, pp. 682-692. .

[WANWONGO7] WaN, L. AND WONG, T.-T. 2007. Sphere maps with the near-equal solid
angle property. Presentation, Game Developer Conference (GDC2007), San
Francisco, CA, March 2007.
http://www.cse.cuhk.edu.hk/~ttwong/papers/spheremap/spheremap.html

[SCHRODERSWELDENS95] SCHRODER, P. AND SWELDENS, W. 1995. Spherical wavelets:
Efficiently representing functions on the sphere. In Proceedings of SIGGRAPH 1995,
ACM Transactions on Graphics, pp. 161-172, Los Angeles, CA, August 1995.

[SLOANO8] SLoAN, P.-P.. 2008. Stupid spherical harmonics tricks. Presentation, Game
Developer Conference (GDC2008), San Francisco, CA, February 2008.
http://www.ppsloan.org/publications/StupidSH35.pdf

[FuITAKANAIO4] Fuita, M. AND KANAI, T. 2004. Precomputed radiance transfer with
spatially-varying lighting effects. In Proceedings of Proceedings of the International
Conference on Computer Graphics, Imaging and Visualization (CGIV 2004), pp. 101-
108..

[RAMAMOORTHIHANRAHANO1] RAMAMOORTHI, R. AND HANRAHAN, P. 2001. An efficient
representation for irrandiance environment maps. ACM transactions on graphics
(Siggraph 2001 Proceedings), pp. 497 — 500, Los Angeles, CA, August 2001.

132 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Chapter 5

Effects & Techniques

Dominic Filion®
Rob McNaughton®

Bl

MENT

! dfilion@blizzard.com
2 rmenaughton@blizzard.com

133 | Page

Chapter 5: StarCraft . Effects and Techniques

Figure 1. 4 screenshot from StarCraft 11

5.0 Abstract

In this chapter we present the techniques and algorithms used for compelling
storytelling in the context of the StarCraft 1° real-time strategy game. We will go over
some of the design goals for the technology used to empower our artists for both in-
game and “story mode” settings as well as describe how the Blizzard art style influenced
the design of the engine. Various aspects of our lighting pipeline will be unveiled, with a
strong focus on several techniques making use of deferred buffers for depth, normals,
and coloring components. We will show how these deferred buffers were used to
implement a variety of effects such as deferred lighting, screen-space ambient occlusion
and depth of field effects. Approaches with respect to shadows will also be discussed.

5.1 Introduction

Starcraft Il presented unique challenges for development as a second installment in a
well-known franchise with the first entry dating from ten years before. During the
process of development we had to overcome these and we will share the engineering

134 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

choices that were made in the context of the Starcraft Il graphics engine, and in
particular how these choices were made to support the unique Blizzard art style.

5.2 Engine Design Goals

Early on during development, we had several themes in mind that we wanted to drive
the development of our graphics engine with:

Scalability First

A major design goal is the scalability of the engine. Blizzard games are well known for
their ability to support a range of consumer hardware, including fairly outdated
specifications, while always providing a great player experience. This was typically
achieved in our previous games by keeping the playing field pretty even between all
players, with a minimal set of video options. For Starcraft Il, we wanted to maximize
compatibility with less capable systems to ensure hassle-free game play for as broad a
player base as possible. Yet we also wanted to utilize the full potential of any available
hardware to ensure the game’s looks were competitive. This meant supporting a wide
range of hardware, from ATI Radeon™ 9800/NVIDIA GeForce™ FX’s to the ATI
Radeon™ HD 4800s and NVIDIA GeForce™ G200s, targeting maximum utilization on
each different GPU platform.

This scalability translated in a fairly elaborate shader framework system. A full
discussion of our shader system could very well encompass a whole chapter by itself so
we will not focus on it here, so this is only a short overview.

We only had one or two artists that would actually have any interest in writing their
own shaders so early on, instead of focusing on writing elaborate shader prototyping
tools for artists we decided to focus our efforts on making the shader framework as
flexible and easy to use for programmers as possible, which is somewhat counter to the
industry trend at this time.

Thus, writing shader code in our game is generally very close to adding a regular C++ file
in our project. Figuratively, we treat the shader code as an external library called from
C++, with the shader code being a free form body of code organized structurally as a C++
codebase would. Thus, the concept of shaders can be a loose one in Starcraft Il — the
shader code library defines several entry points that translate to different shaders, but
one entry point is free to call into any section of shader code. Thus it would be difficult
to talk about how many “individual” shaders Starcraft Il uses, as it is a single body of
code from which more than a thousand shader permutations will generally be derived
for a single video options configuration. Making our shader framework system as
familiar as possible for programmers has enabled us faster turnaround time when
debugging shaders. In our case, when our technical artists have some ideas for new

135|Page

Chapter 5: StarCraft . Effects and Techniques

shaders they will generally prototype it using 3D Studio MAX renders and a programmer
will implement an optimized version of the effect, often times adding reusable
abstractions to the shader that may not have been apparent to an artist. In all, Starcraft
Il uses about 8,000 unique, non-repeating lines of shader code, divided amongst 70 files.
Interestingly enough, we’ve come to the point where the body of shader code alone has
grown larger than the entire codebase for games from the early stages of the games
industry.

Stress GPU over CPU

We chose early on to stress the GPU more than the CPU when ramping up quality levels
within the game. One of the main reasons for this is that, in Starcraft Il, you are able to
spawn and manage potentially hundreds of the smaller base units such as zerglings and
marines. In large-scale multiplayer games with eight players, this can translate to up to
roughly five hundred units on the screen at a single time, at peak. Because the number
of units built is largely under the control of the player (as well as due to the choice of
the selected race), balancing the engine load such that CPU potential is well utilized in
both high-unit count and low-unit unit count situations becomes cumbersome.

Figure 2. Players can control a very high number of units, thus balancing batch counts
and vertex throughputs is key to reliable performance.

136 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

In contrast, GPU loads in our case tend to be much more affected by the pixel shader
load, which tends to stay constant for a real-time strategy game because of the
generally low overdraw. Although vertex counts for a particular scene can ramp up well
above a million in a busy battle scene, this type of vertex throughput is well handled by
most modern GPU hardware. This has driven us to push the engine and art styles
towards ever increasing pixel-shader level effects whenever possible, minimizing batch
counts and using relatively conservative vertex counts.

The Starcraft Il units are generally viewed from a good distance away and therefore
result in a small screen-space footprint during game play. Therefore, increasing the
model vertex counts would have given us marginal benefits during actual game play in
most cases. For that reason we avoided generating art assets with large polygon counts.

Dual Nature of the Engine

Starcraft Il is supported by an engine that in many ways has a split personality; during
normal game play we typically render scenes from a relatively far away distance, with
high batch counts, and a focus on action rather than details. At the same time, we really
wanted to push our storytelling forward with Starcraft I, and this is where the game’s
“Story Mode” comes in. In this mode, the player generally sits back to take in the game’s
rich story, lore and visuals, interacting with other characters through dialogues and
watching actions unfold. This is the mode where most of Starcraft II's storytelling
happens and it has radically different and often opposing constraints to the in-game
mode; story mode generally boasts lower batch counts, close-up shots, and a somewhat
more contemplative feel — all things more typical of a first person shooter.

137 | Page

Chapter 5: StarCraft . Effects and Techniques

-

Figure 3. In-game view vs. “story mode” in Starcraft I1.

138 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

We will explore how these different design goals affected our algorithmic choices. We
will showcase some of our in-game cinematics and peel off some of the layers of
technology behind it, as well as shows examples of the technology in actual gameplay.

5.3 Screen-Based Effects

One of the objectives for Starcraft Il was to present rich lighting environments in story
mode, as well as more lighting interactions within the game itself. Previously in Warcraft
111, each unit had a hard limit as to the number of lights that could affect it at any given
time. This would cause light popping as units moved from one of light influences to
another. For that reason, the use of dynamic lighting was fairly minimal. At the same
time, using forward rendering approaches, we were quickly presented with the problem
of the large increase in the number of draw call batches. One of the stress cases we
used was a group of marines, with each marine casting a flickering light that in turn
shades the surrounding marines around him. The batch counts in such cases rapidly
became unmanageable, and issues were also present with our deeply multi-layered
terrain rendering, thus requiring complex terrain slicing and compounding the problem.

The goal to reduce batch counts was the first step that sent us on the road towards
using deferred buffers for further treatment at the end of the frame. “Deferred
rendering” term (as covered in [CALvERO4], [SHisHKovTsov05] and in [KooneQ7]) often
refers to the storage of normals, depth and colors to apply lighting at a later, “deferred”
stage. In our case we use it in the broader sense to mean any graphical technique which
uses this type of deferral, even in cases where a non-deferred approach would have
been viable as well. We’ll explore issues and commonalities with all things deferred.

In practice, we’ve found many pros and cons for using deferred computations with the
storage of relevant information, such as depth values, normals, etc. Although storage of
this information consumes memory and bandwidth, as well as the extra cost of re-
sampling the buffers at the processing stage, it generally helps greatly with scalability by
ensuring the cost curve of effects tend to stay linear instead of exponential. When using
deferred buffers, adding more layers of effects generally results in a linear, fixed cost
per frame for additional full-screen post-processing passes regardless of the number of
models on screen, whereas the same effect with forward rendering exhibits an
exponential cost behavior. This leads us unto our goal of maximizing resource usage
regardless of whether there five or five hundred units on the screen.

Keeping batch counts low is paramount for any RTS game. We were thus naturally
drawn away from trying to fill up the deferred buffers in a separate pass and instead
relied on multiple render targets (MRTSs) to fill the deferred buffers during the main
rendering. Thus, in the main rendering pass, several MRTs will be bound and filled with
their respective information. Much of the mainstream hardware is limited to four

139 | Page

Chapter 5: StarCraft . Effects and Techniques

render targets bound at once, so right now it makes sense to pick deferred component
that will fit within the sixteen individual channels this provides for.

For Starcraft I, any opaque model rendered will store the following to multiple render
targets bound in its main render pass:
e Color components not affected by local lighting, such as emissive, environment
maps and forward-lit color components;
e Depth;
e Per-pixel normal;
e Ambient occlusion term, if using static ambient occlusion. Baked ambient
occlusion textures are ignored if screen-space ambient occlusion is enabled;
e Unlit diffuse material color;
e Unlit specular material color.

AN

u D U
Unlit & n Normal | e Diffuse | A Specular | "
i u u
Emissive | ¢ o color] <
t

e e
d i d

MRT 0 MRT 1 MRT 2 MRT 3

(optional)

Figure 4. MRT setup.

As a quick reminder, simultaneously bound render targets under DirectX® 9 need to be
of the same width and height, and in most cases, the same bit depth. Some, but not all,
hardware supports independent color write control on each MRT which should be used
whenever possible to minimize wasted bandwidth for unused components. For
example, the alpha component is not used on all of these buffers.

We are making heavy use of HDR ([RWPDOS5])in Starcraft I, and thus all these buffers

will normally be four-channel 16-bit floating point formats. Using higher precision
format helps to sidestep accuracy issues and minimizes pixel shader instructions for

140 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

decoding the buffers. The restriction that all buffers should be of the same bit depth
unfortunately forces the use of much wider buffers than we actually need for a many of
these buffers, pushing the output bandwidth to 24 bytes per pixel. We've found
however that even with this very heavy bandwidth cost the freedom this allows us in
the placement of our lighting was well worth the expense.

In the majority of cases, all objects outputting to these buffers are opaque, with some
notable exceptions; we will come back to the problem of handling rendering
transparent objects later.

Our terrain is multi-layered, in which case the normals, diffuse and specular colors are
blended in these buffers, while leaving the depth channel intact — only the bottom
terrain layer writes to the depth buffer.

Rendering to the MRTs provides us with per-pixel values that can be used for a variety
of effects. In general, we use:

e Depth values for lighting, fog volumes, dynamic ambient occlusion, and smart
displacement, depth of field, projections, edge detection and thickness
measurement.

e Normals for dynamic ambient occlusion

e Diffuse and specular for lighting

5.4 Deferred Lighting

Deferred lighting in Starcraft Il is used for local lights only: point and spot lights with a
defined extent in space. Global directional lights are forward rendered normally;
because these lights have no extents and cover all models, there is little benefit in using
deferred rendering methods on them, and it would actually be slower to resample the
deferred buffers again for the entire screen.

The computation results for deferred rendering vs. forward rendering equations are
equivalent, yet the deferred form is more efficient for complex lighting due to the
tighter light coverage offered by rendering the light shapes as a post-process. For the
most part, the new equation simply moves terms from one stage of the rendering
pipeline to a later stage, with the notable exception of the pixel’s view space position,
which is more efficiently reconstructed from the depth information.

Pixel Position Reconstruction

Pixel shader 3.0 offers the VPOS semantic which provides the pixel shader with the x
and y coordinates of the pixel being rendered on the screen. These coordinates can be
normalized to the [-1..1] range based on screen width and height to provide a
normalized eye-to-pixel vector. Multiplying by the depth will provide us with the pixel’s

141 |Page

Chapter 5: StarCraft . Effects and Techniques

view space position. For pixel shader 2.0, a slightly slower version is used where the
vertex shader feeds to the pixel shader a homogeneous equivalent to VPOS, from which
the w component must be divided in the pixel shader.

float3 vViewPos.xy = INTERPOLANT VPOS * half2(2.0f, -2.0f) + half2(-1.0f, 1.0f)) *
0.5 * p vCameraNearSize * p vRecipRenderTargetSize;

vViewPos.zw
vViewPos.xyz

half2(1.0f, 1.0f);
vViewPos.xyz * fSampledDepth;

float3 vWorldPos = mul(p_mInvViewTransform, vViewPos) .xyz;

Listing 1. Pixel position reconstruction

Stenciling, Early-Z and Early-Stencil

In our case, usage of early stencil out provided substantial speed improvements for our
scenes. Stenciling allows us to discard pixels that are covered by the light shapes but
whose depth is too far behind the light to be affected by it.

By the same token, pixels that are in front of the light’s influence will automatically
benefit from early-z out as the light shape pixels will be discarded early on.

Early-Z will reduce cost Early stencil reduces cost
of hidden lights. of objects behind light that
are not lit by it

Figure 5. Deferred rendering interaction with z-buffer and stencil buffer.

142 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

To benefit from early stencil, the light shapes must be rendered again with color writes
off before its normal lighting pass. The stencil operation is slightly different depending
on whether the viewing camera sits inside the light shape — this has to be tested on the
CPU.

If the camera is outside the light shape, effectively we want to only pass through pixels
where only one side of the light shape is visible (which will always be the front facing
parts); this implies the pixel of the surface being lit is hiding the back facing part of the
light shape, aka the surface pixel is inside the light shape. This can be achieved by
clearing the stencil and passing any pixels that show a front face but no back face for the
light shape.

If the camera is inside the light shape, then only the back side of the light shape is
visible. In this case we want to color any of the light shape’s back facing pixels that failed
the z-test, which implies there is a lit surface inside the light shape.

Deferred Lighting in Action
The low batch counts of the deferred system allowed us to truly refine the lighting in
our cinematic scenes. Here we see a shot of one of our scenes, which consists of roughly

x (fifty) dynamic lights in the same room, from small Christmas lights to larger lighting
coming from the TV screen.

143 | Page

Chapter 5: StarCraft . Effects and Techniques

Figure 6. Deferred lighting allows us to use complex lighting environments.

144 |Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

5.5 Screen-Space Ambient Occlusion

SSAO Basics

Although our initial interest in screen space ambient occlusion was sparked by the
excellent results that we observed in such games as Crysis©, we arrived at our solution
independently. In a nutshell, the main idea behind screen space ambient occlusion is to
approximate the occlusion function at points on visible surfaces by sampling the depth
of neighboring pixels in screen space. The resulting solution will be missing occlusion
cues from objects that are currently hidden on the screen, but since ambient occlusion
tends to be a low frequency phenomenon, the approximation is generally quite
convincing.

Figure 7. Scene with lighting information only; softer shading cues are accomplished
through SSAO.

SSAO requires depth to be stored in a prior step; for Starcraft Il this is the same depth
buffer that we use for deferred lighting. The ambient occlusion term that will be
produced by the SSAO is stored in the alpha channel of our diffuse deferred render
buffer, which is then used to modulate lighting from certain global and local lights.

145 | Page

Chapter 5: StarCraft . Effects and Techniques

At any visible point on a surface on the screen, multiple samples (8 to 32) are taken
from neighboring points in the scene. These samples are offset in 3D space from the
current point being computed; they are then projected back to screen space to sample
the depth at the sample location.

Figure 8. Overview of SSAO sampling process.

The objective is to check if the depth sampled at the point is closer or further away than
the depth of the sample point itself. If the depth sampled is closer, than there is a
surface that is covering the sample point. In general this means there is another surface
nearby that is covering the area in the vicinity around the current pixel, and some
amount of occlusion should be occurring. It is the average of these samples that will
determine the total occlusion value for the pixel.

The depth test of the sample point with its sampled depth is not simply a Boolean
operation. If the occluding surface is very close to the pixel being occluded, it will
occlude a lot more than it is further away; and in fact beyond a certain threshold there
needs to be no occlusion at all as we don’t want surface far away from the surface to
occlude it. Thus we need some type occlusion function to map the relationship between

146 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

the depth delta between the sample point and its sampled depth, and how much
occlusion occurs.

If the aim is to be physically correct, then the occlusion function should be quadratic. In
our case we were more concerned about being able to let our artists adjust the
occlusion function, and thus the occlusion function can be arbitrary. The occlusion
functions can be any function that adheres to these criteria:
e Negative depth deltas should give zero occlusion (the occluding surface is behind
the sample point);
e Smaller depth deltas should give higher occlusion values;
e The occlusion value needs to fall to zero again beyond a certain depth delta
value.

For our implementation we simply chose a linearly stepped function that is entirely
controlled by the artist. There is a full occlusion threshold where every positive depth
delta smaller than this value gets complete occlusion of one, and a no occlusion
threshold beyond which no occlusion occurs. Depth deltas between two extremes fall
off linearly from one to zero, and the value is exponentially raised to a specified
occlusion power value. If a more complex occlusion function is required, it can be pre-
computed in a small 1D texture to be looked up on demand.

Behind In Front
-

Power curve

Small epsilon with no occlusion

D=0
Figure 9. Occlusion function.

To recap, the SSAO generation process is:
e Compute the view space position of a pixel;

147 |Page

Chapter 5: StarCraft Il: Effects and Techniques

e Add (8 to 32) offset vectors to this position;

e Remap these offset vectors to where they are in screen space;

e Compare the depth of each offset vector with the depth at the point where the
offset is;

e Each offset contributes occlusion if the sampled depth on screen is behind the
depth of the offset vector. Occlusion factor is based on the difference between
the sampled depth and the depth of the offset vector.

All in the Details: SSAO Artifacts

The basics of SSAO are fairly straightforward but there several alterations that need to
be made for it to produce acceptable results.

Sampling Randomization

To smooth out the results of the SSAO lookups, the offset vectors must be randomized
thoroughly. One good approach, as given in (6) is to generate a 2D texture of random
normal vectors and lookup this texture in screen space, thus retrieving a unique random
vector per pixel on the screen. More than one random vector must be generated per
pixel however: these are generated by passing a set of offset vectors in the pixel shader
constant registers and reflecting these vectors through the sampled random vector,
thus generating a semi-random set of vectors at each pixel. The set of vectors passed in
as registers is not normalized — having varying lengths helps to smooth out the noise
pattern. In our case we randomize the length of the offset vectors from 0.5 to 1,
avoiding samples clustered too close to the source point. The lengths of these vectors
are scaled by an artist-controlled parameter that determines the size of the sampling
area.

\ s Vs -1 \ -~ -~ ~ —
AN A NNE i
— / / ~~
/1l LN / ~
N ~1 v Ny ~ W -—
AN /N A AN 1
N PR A~ “~
AN A AT A ~
- AY
N , ~ |\ ~
Random 3D vectors texture Uniformally distributed 3D random vectors
in constant registers
\ P

Reflect

l

8 to 32 unique, well-distributed
random vectors for each screen pixel

Figure 10. Randomized sampling process.

For each screen pixel

148 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

2 mg.% E &

Figure 11. SSAO term after random sampling applied. Applying blur passes will further
reduce the noise to achieve the final look.

Blurs

The previous step helps to break up the noise pattern, producing finer grained pattern
that is less objectionable. With wider sampling areas however, more processing such as
blurs become necessary. The ambient occlusion results are low-frequency, and we’ve
found losing some of the high-frequency detail due to blurring was not an issue.

The ambient occlusion must not bleed through edges to objects that are physically
separate within the scene, and thus a form of smart Gaussian blur is used. This blur
samples the nearby pixels as a regular Gaussian blur shader would, yet the normal and
depth for each of the Gaussian samples is sampled as well (encoding the normal and
depth in the same render targets presents significant advantages here). If either the
depth from Gaussian sample differs from the center tap by more than a certain
threshold, or the dot product of the Gaussian sample and the center tap normal is less
than a certain threshold value, then the Gaussian weight is reduced to zero. The sum of
the Gaussian samples is then renormalized to account for the missing samples.

149 | Page

Chapter 5: StarCraft . Effects and Techniques

Several blur passes can thus be applied to the ambient occlusion output to completely
eliminate the grain pattern.

Self-occlusion

The output from this produces convincing results, but has the issue that in general no
area is ever fully unconcluded due to the fact that the random offset vectors from each
point will penetrate through the surface of the object itself, and the object becomes
self-occluding at all times.

One possible solution around this is to generate the offset vectors around a hemisphere
centered around the normal at that point on the screen (which implies a deferred
normal buffer has to be generated, another strong point for reusing output from
deferred rendering). Transforming each offset vector by a matrix can be expensive
however, and one compromise we’ve used is to instead perform a dot product between
the offset vector and the normal vector at that point, and to flip the offset vector is the
dot product is negative. This is a cheaper way to solve the problem at the expensive of
possibly making the noise pattern more predictable.

«— Normal

Offset vectors below surface
normal are flipped

Figure 12. Handling self-occlusion.
Edge Cases

The offset vectors are in view space, not screen space, and thus in close-up camera
shots these vectors will be longer so that the SSAO sampling area remains constant
within the scene. This can mean more noise for close-ups, but also presents problems
when samples end up looking up outside the screen. There is no straightforward way to
deal with the edge case, as the depth information outside the screen is not present:

150 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

rendering a wider area than what is seen in screen could help improve this, but is not a
robust solution that would work in all cases. The less objectionable way to deal with this
is to ensure that samples outside the screen return a large depth value, ensuring they
would never occlude any neighboring pixels. This can achieved through the “border
color” texture wrapping state.

To prevent unacceptable breakdown of the SSAO quality in extreme close-ups, we’ve
found it necessary to impose an SSAO screen-space sampling area limiter. In effect, if
the camera is very close to an object and the SSAO samples end up being too wide, the
SSAO area consistency constraint is violated so that the noise pattern doesn’t become
too noticeable. Another alternative would to simply vary the number of samples based
on the sampling area size, but this can introduce wide frame rate swings that we have
been eager to avoid.

SSAO Performance

SSAO can give a significant payback in terms of mood and visual quality of the image,
but it can be quite an expensive effect. The main bottleneck of the algorithm is the
sampling itself: the random nature of the sampling, which is necessary to minimize
noise, wreaks havoc with the GPU’s texture cache system and can become a problem if
not managed. The performance of the texture cache will also be very dependent on the
sampling area size, with wider areas straining the cache more and vyielding poorer
performance. Our artists quickly got in the habit of using SSAO to achieve a faked global
illumination look that suited their purposes: this required more samples and wider
sampling areas, so extensive optimization become necessary for us.

One method to bring SSAO to an acceptable performance level relies on the fact that
ambient-occlusion is a low-frequency phenomenon. Thus we’ve found there is generally
no need for the depth buffer sampled by the SSAO algorithm to be at full screen
resolution. The initial depth buffer can be generated at screen resolution, since we
reuse the depth information for other effects within the game and it has to fit the size of
the other MRTSs, but it is thereafter down sampled to a smaller depth buffer that is a
guarter size of the original on each side. The down sampling itself does have some cost
but the payback in improved texture cache afterwards is very significant.

SSAO and Global lllumination
Wide-area SSAO vs. Outline Enhancement
One thing we’ve quickly discovered is that our cinematic artists loved the quasi-global

illumination feel of the output. If the sampling area of the SSAO is wide enough, the look
of the scene changes from darkness in nooks and crannies to a softer, ambient feel.

151 | Page

Chapter 5: StarCraft . Effects and Techniques

The SSAO implementation was thus pulled by the art direction into two somewhat
conflicting directions: on the one hand, the need for tighter, high-contrast occluded
zones in deeper recesses, and on the other hand, the desire for the larger, softer
ambient look of the wide area sampling.

In our case, we resolved this conundrum by splitting the SSAO samples between two
different sets of SSAO parameters: one quarter of our samples are concentrated in a
small area with a rapidly increasing occlusion function, while the remainder uses a wide
sampling area with a gentler function slope. The two sets are averaged independently
and the final result uses the value from the set which produces the most (darkest)
occlusion.

152 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

5.6 Depth of Field

Figure 13. Depth of field as used in Starcraft Il for a cinematic feel.

Because deferred rendering had to use generate a normal and a depth buffer every
frame, we were naturally drawn to leverage this as much as possible. One of the post-
processing effects crucial for many of our story mode scene has been depth of field.
There has been a fair amount of interest in real-time depth of field rendering, as
covered in [SCHEUERMANNTATARCHUKO4] and [Demers05], for example. For storytelling we
will often focus the camera on a specific object to attract the attention of the viewer.
Here is a review of the problems we faced and how they were solved.

Circle of Confusion

The ingredient needed to perform the depth of field, which is common for real-time
depth of field algorithm, is to compute a blur factor, or circle of confusion (CoC) for each
pixel on the screen. We only are loosely to the definition of the circle of confusion,
which would be the radius of the circle over which pixels, or rays, are blurred — the only
point of importance is that higher levels of CoC needs to map to a blurrier image in
some kind of predictable gradient.

153 | Page

Chapter 5: StarCraft . Effects and Techniques

Thus, the circle of confusion is art-driven instead of physics-driven. Artists specify a
reference point that is a certain distance in front of the viewing camera. From this point,
a full focused distance is specified — all depths whose distance from the reference point,
either in front or behind the reference point, is less than this distance are sharp. Beyond
this distance, the image progressively gets blurrier until it reaches the fully unfocused
distance where the blurriness is maximal.

Thus computing the circle of confusion comes down to sampling from the deferred
depth buffer and going through the following equation:

(DofAmount x max (0, Depth — FocalDepth — NoBlurRange))
saturate

MaxBlurRange — NoBlurRange

Equation 1. CoC as a function of depth.

Carr:era , Maximum Maximum
M= Blur Fades In Fades In Blur
(DOF Amount) (DOF Amount)

Figure 14. Depth of field regions.

Blurring

The circle of confusion value, for each pixel, can then be used to gradually blur the
image. The blur needs to be gradual as the CoC value increases, and not present under-
sampling artifacts.

154 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

Simply varying the width of the Gaussian filter kernel to simulate different blur levels
doesn’t work too well; larger blur factors require more blur samples to look as good.
This is achievable by varying the number of samples per pixel, which unfortunately
requires use of dynamic branching in the pixel shader, whose market penetration wasn’t
as high as we needed it to be.

Thus a different approach is to generate pre-blurred images at fixed levels and linearly
interpolate the outputs from the two closest pre-blurred sample points. In practice, this
means blurring between four different reference images: the sharp image, two other
screen-sized images of increasing blurriness, and a maximal blur image with each side a
quarter of the original.

These four images can be generated, and the depth of field image effects can then
compute the CoC factor and use it to linearly blend between two of the images.

Edge Cases

The two previous steps work well to create the effect of blurriness in different area of
the screen based on the pixel depth, but edges pose problems that require special care.
To be convincing, depth of field needs to exhibit the following behaviors:

e Out-of-focus foreground objects should bleed unto objects behind them,
whether sharp or unfocused;

e Conversely, bleeding of unfocused background objects unto foreground objects
should be avoided — clearly visible, focused edges need to stay sharp.

However, the blurring process occurs by looking up samples from neighboring pixel and
doing a weighted, which requires us to restate these statements in a way that maps
better to how the algorithm is actually implemented, as follows:

e Avoiding sharp halos: Sharp pixels should not contribute to the weighted sum of
any neighboring pixels or they will create halos as well - partially unfocused
pixels should contribute more to the sum of neighboring pixels than more
focused ones.

e Bleeding of blurry objects over background: the blurriness of a single pixel does
not depend on the circle of confusion of that pixel alone; a nearby blurry pixel
with a large circle of confusion would have the effect of making the current pixel
blurry;

e Depth ordering of blurriness: Pixels in the background should not contribute to
the weighted sum of pixels in the foreground;

155 | Page

Chapter 5: StarCraft . Effects and Techniques

Sharp objects should not contribute
to neighbor samples

Blurry background

Pixels in background should not

contribute to pixels in the foreground Sharp object

Blur halo

Blurry foreground objects should contribute
to nearby pixels even if those are sharp

Figure 15. Depth of field rules.

For the first constraint, we must weigh the Gaussian samples by the corresponding CoC
factors for each pixel. The sampled CoCs are renormalized so that the sum of all
sampled CoCs adds up to one and each sampled CoC is multiplied by the corresponding
sample. Thus, a sharp pixel will contribute less (or not at all) to neighboring pixels that
are blurry. Although the effect may not be correct in a strict sense, the most important
goal here is to eliminate any changes in color for blurry pixels when completely focused,
neighboring pixels are changing.

The second constraint can be solved by blurring the circle of confusion factors in an
image a quarter size per side, ensuring that any blurry pixels will cause neighboring
pixels to become blurry as well.

Blurring all CoCs will violate the third constraint however, causing background objects to
blur over foreground ones — we need to conserve some sense of depth ordering of the
blur layers. We can achieve this through the following process:
e Downscale and blur the depth map in an image a quarter size per side;
e Sample both the blurred and non-blurred depth maps;
e If the blurred depth is smaller (closer) than the non-blurred depth, use the CoC
from the blurred CoC map;

156 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

e If the blurred depth is larger (further away) than the non-blurred depth,
compute and use the CoC for the current pixel only (no CoC blurring).

This effectively compares the Gaussian-weighted average of the cluster of pixels around
the current pixel and compares it with depth at that pixel only. If this average is further
away than the current pixel, then other pixels in that area tend to be behind the current
pixel and do not overlap it. Otherwise they are in front, and their CoC is expected to
affect the current pixel’s CoC (blur over it).

Putting It All Together

Putting all the constraints in place, we can put everything together using the following
process:

e Perform a full-screen pass to compute the circle of confusion for each pixel in
the source image and store the result in the alpha channel of a downscaled CoC
image buffer a quarter of the size on each side;

e Generate the medium blur image by applying a RGB Gaussian blur with each
sample weighted by the CoC on the source image;

e Generate the max blur image by downscaling the RGB of the source image into
an image buffer a quarter of the size on each side — the CoC and large blur
buffers can be the same since they use different channels;

e Blur the max blur image with the RGB samples weighted by the downscaled
CoC. The alpha channel, which contains the CoC, also gets blurred here, but its
samples are not weighted by itself.

e Downscale and blur the depth map into a downscaled depth image — it should
be noted in our case we reuse the downscaled depth for our SSAO pass as well
(but do not blur depth for the SSAO);

e Then apply the final depth of field shader, binding the source image, medium
and large blur/blurred CoC image, the non-blurred depth map and the
downscaled depth image to the shader. The depth of field shader:

o Computes the small blur value directly in the shader using a small sample
of four neighbor pixels;

o Computes the CoC for that pixel (the downscaled CoC would not match);

o Samples the non-blurred and blurred depth to compare them — use
computed CoC if blurred depth is further away than non-blurred depth,
otherwise use CoC value samples from blurred CoC image;

o Calculate contribution from each of the possible blur images: source,
computed small blur color, medium and large blur images based on the
CoC factor from zero to one;

o Sums the contribution of the small, medium and large blurs

o Output the alpha to include the contribution of the source (no blur)
image.

157 | Page

Chapter 5: StarCraft Il: Effects and Techniques

Source Image Depth Map

CoC Map
1/4 size

Lf’/r////’

Medium Blur Image

Max Blur Image
1/4 size

Blurred CoC Map
1/4 size

Blurred Depth Map
1/4 size

Figure 15. Depth of field texture inputs & outputs. In the implementation some

components reuse the same texture, but they re shown separated here for clarity.

p fFocusDistance;
p fFullFocusRange;

p_sMediumBlurMap;

float p fDOFAmount;
float

float

float p_fNoFocusRange;
sampler2D

sampler2D p sLargeBlurMap;
sampler2D p_sCoCMap;
sampler2D

p_sDownscaledDepth;

// Depth of field amount.

// Distance in focus.

// Range inside which everything is in focus.
// Range at which everything is fully blurred.
// Medium blur map for depth of field.
// Large blur map for depth of field.

// COC map.

half ComputeCOC(float depth) {
return saturate(p fDOFAmount * max(0.0f,
p_fFullFocusRange) / (p_fNoFocusRange - p fFullFocusRange)

abs (depth - p fFocusDistance) -
)i
}

half4 Tex2DOffset(sampler2D s, half2 vUV, half2 vOffset) {
return tex2D(s, vUV + vOffset *

half2(1.0f / p vSrcSize.x, 1.0f / p vSrcSize.y));}

half3 GetSmallBlurSample(sampler2D s, half2 vUV) {
half3 cSum;
const half weight = 4.0 / 17;
cSum = 0;
cSum += weight * Tex2DOffset(s, vUV, half2(0.5f, -1.5f)).rgb;
cSum += weight * Tex2DOffset(s, vUV, half2(-1.5f, -0.5f)).rgb;
cSum += weight * Tex2DOffset(s, vUV, half2(-0.5f, 1.5f)).rgb;
cSum += weight * Tex2DOffset(s, vUV, half2(1.5f, 0.5f)).rgb;

return cSum;

// Depth of field mode.

half4 PostProcessDOF (VertexTransport vertOut) {
float4 vNormalDepth = tex2D(p sNormalDepthMap,
float vDownscaledDepth = tex2D(p sDownscaledDepth,
half fUnblurredCOC = ComputeCOC(PIXEL DEPTH) ;

INTERPOLANT UV.xy);

INTERPOLANT UV.xy).a;

half fCoC = tex2D(p sLargeBlurMap, INTERPOLANT UV.xy).a;
// 1f object is sharp but downscaled depth is behind,
if (vDownscaledDepth > vNormalDepth.a)

fCoC = fUnblurredCOC;

then stay sharp

158 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

half d0 = 0.50f;
half dl = 0.25f;
half d2 = 0.25f;

half4 weights = saturate(fCoC * half4(-1 / 40, -1 / d1, -1 / d2, 1 / d2) +
half4(1, (1 -d2) /di, 1/ d2, (d2 -1) / d2));
weights.yz = min(weights.yz, 1 - weights.xy);

half3 cSmall
half3 cMed
half3 clLarge

GetSmallBlurSample (p sSrcMap, INTERPOLANT UV.xy);
tex2D(p sMediumBlurMap, INTERPOLANT UV.xy).rgb;
tex2D(p sLargeBlurMap, INTERPOLANT UV.xy).rgb;

half3 cColor = weights.y * cSmall + weights.z * cMed + weights.w * clLarge;
half fAlpha = dot(weights.yzw, half3(16.0f / 17.0f, 1.0f, 1.0f));
return half4 (cColor, fAlpha);

Listing 2. Depth of field shader.
5.7 Dealing with Transparent Object Rendering

It’s worthwhile to mention some of the issues with transparency, particularly with
respect to the fact that deferred rendering typically do not support transparency very
well, or at all. It should be noted that the challenges with transparent objects are not
unique to deferred lighting, and in fact if one is striving for absolute correctness,
transparency creates problems throughout the entire engine pipeline.

As is typical for any kind of deferred rendering techniques, transparencies are not taken
into account by the deferred renderer. We’'ve found however that lit transparencies
don’t contribute that significantly to the look of the scene as they will pick up the shade
of the objects behind them. We do tag some transparent objects selectively as being
affected by lighting, in which case these are forward rendered with a multi-pass
method. We've been careful to avoid hard cap limits of any sorts on the engine
whenever we can, and a multi-pass approach proved to be more scalable than a single-
pass one.

Another advantage of the multi-pass lighting approach is that there is no need for more
than a single shadow map buffer for the local lighting; the shadow map for each light
can be applied one at a time and applied in succession. This proved important because
the translucent shadow technology we’ve designed already needs a second shadow map
to render the effect.

We’ve found that in our environments transparencies are not present in an amount
sufficient to create very drastic lighting changes, except for a few specific pieces that

we’ve tagged manually for forward rendering.

So, in light of this, we didn’t strive to find clever solutions to fix problems with
transparencies with respect to deferred lighting. Other subsystems however, can create

159 | Page

Chapter 5: StarCraft . Effects and Techniques

artifacts that are way more noticeable if absolutely no support for transparencies is
present.

Depth of field, for instance, has very disturbing artifacts if depth is not taken into
account for key transparencies. In this shot, we had a translucent egg that was showing
as very crisp along its unfocused neighbors. SSAO also has issues with transparencies,
especially for not-quite-opaque objects like bottles that effectively lose their ambient
occlusion.

For some of these cases, using a simple layered system worked well enough for us. The
depth map is first created from the opaque objects, opaque objects rendered, and
depth-dependent post-processing effects subsequently applied on them. Transparent
objects are then rendered as they would be normally from back to front, and key
transparencies are allowed do a pre-pass where they will output their normals and
depth to the deferred buffers. This effectively destroys the depth and normals
information for the opaque objects behind these transparencies, but since all post-
processing has been applied to these objects already, that information is no longer
needed.

After the pre-pass, one more pass is used to update the ambient occlusion deferred
buffer. The transparency itself is then rendered, and then another depth of field pass is
done specifically on area covered by the transparency.

This certainly makes rendering that particular transparency much more expensive, and
we only enable this option for key transparencies where maximum consistency is
needed. In simpler cases, we will cheat by allowing the transparency to emit it depth in
the depth of field pass (for very opaque objects) or simply work with the art to minimize
the artifacts.

160 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

5.8 Translucent Shadows

MERUT (1G] Allisirie=r (=il ech TReeL FE] - .,Q; 4850 %4500

Figure 16. Translucent shadows allow objects such as smoke and explosion to cast
shadows.

Shadow maps are one of the earlier examples of successfully using screen-space
information to resolve shadowing problems that otherwise are much more difficult to
deal with in world space. In this section, we will show how extending the shadow map’s
per-pixel information with some extra channels of information can be used to easily
augment shadow maps with translucent shadow support.

The shadow map algorithm is extended with a second shadow map that will hold the
information for translucent shadows only; the regular shadow map will still contain the
information for opaque shadows. In addition, a color buffer to hold the color of the
translucent shadows. However, on most hardware a color buffer of the same size of the
shadow map needs to be bound whenever the shadow map is rendered, as most
hardware does not support having a null color render target. In most games this color
buffer is simply set to the lowest bit depth available to minimize the waste of memory,
and the color buffer is otherwise not used. We are thus taking advantage of this “free”
color buffer.

161 | Page

Chapter 5: StarCraft . Effects and Techniques

In the first pass, the opaque shadow map is filled up as it normally would be, rendering
only opaque objects. Then, transparent shadow objects are rendered in our second
shadow map for transparent objects with z depth write on, no alpha testing and a
regular less-equal z-test. This will effectively record the depth of the closest transparent
object to the light.

The transparent shadow color buffer is first cleared to white and is then filled by
rendering the transparent shadow objects, from front to back, with the render states
thay would normally be used in the regular rendering, no depth write and the less-equal
z-test. In this stage we will be using the opaque shadow map as the z-buffer when filling
the color buffer, ensuring no colors are written for translucencies hidden by opaque
objects. The front to back ordering is necessary because we are treating these
transparencies as light filters. The light hits the front transparencies, and gets filtered as
it hits each transparent layer in succession.

~
Blue shadow color Red shadow color -~ -~ 7
is filtered out is filtered out -~ -
~ 7
P 7~
~ e 4
7
~ - 4
~ e
-~ — _
Opact objects cast
P s Ve shadows normally
~ - y on both opaque and
-~ transparent objects
-
~
~ -~
~ -
e L
Transparent object Transparent object Opaque
RGB 1,1,0 RGB 0,1,1

Both red and blue shadow
colors are filtered

Figure 17. Light filtering process.

162 | Page

Advances in Real-Time Rendering in 3D Graphics and Games Course — SIGGRAPH 2008
N. Tatarchuk (Editor)

The rendering of the actual translucent shadows then proceeds as follows:

e Perform shadow test with opaque shadow map and translucencies shadow map

e If we failed the translucent shadow map test, modulate by the color in the
transparent shadow color map

e Modulate by the result of the opaque shadow map.

This effectively gives us the following desired behavior:
e Passing both tests doesn’t color the light;
e Passing the opaque test but failing the translucent test will always color the light
by the translucent shadow color;
e Failing the opaque test will always remove the light contribution.

5.9 Conclusions

Storage of per-pixel information in off-screen buffers opens up a wide array of
possibilities for screen-based effects. Screen-space data sets, although incomplete, are
straightforward to work with and can help to unify and simply the rendering pipeline.
We’ve shown here a few ways that we record and use these screen-space data sets in
Starcraft 1l to implement effects such as deferred rendering, screen-space ambient
occlusion, depth of field, and translucent shadow maps. The resulting per-pixel
techniques are easy to scale and manage and tend to be easier to fit in a constant
performance footprint that is less dependent on scene complexity.

5.10 References

[CALVERO4] CALVER, D. 2004. Deferred Lighting on PS 3.0 with High Dynamic
Range, ShaderX3: Advanced Rendering with DirectX and OpenGL
(Shaderx Series), Engel, W. (Editor), Charles River Media, Cambridge, MA,
November 2004

[SHIsHKOVTSOV05], SHIsHKovTSsov, O. 2005. Deferred Shading in S.T.A.L.K.E.R.,
GPU Gems 2: Programming Techniques for High-Performance Graphics
and General-Purpose Computation (Gpu Gems), Pharr, M., Fernando, R.
(Editors), Addison-Wesley, March 2005.

[KooNEO7], KooNE, R. 2007. Deferred Shading in 7abula Rasa, GPU Gems 3,
Nguyen, H. (Editor), Addison-Wesley, August 2007

163 | Page

Chapter 5: StarCraft . Effects and Techniques

[RWPDO05] REINHARD, E., WARD, G., PATTANAIK, S. AND DeBevec, P. 2005. High
Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting,
Morgan Kaufmann; Har/Dvdr edition, August 2005

[MiITTRINGO7] MITTRING, M. 2007. Finding Next Gen — CryEngine 2.0, Chapter 8,
SIGGRAPH 2007 Course 28 — Advanced Real-Time Rendering in 3D
Graphics and Games, Siggraph 2007, San Diego, CA, August 2007.

[SCHEUERMANNTATARCHUKO4] SCHEUERMANN, T. AND TATARCHUK, N. 2004. Improved
Depth of Field Rendering, ShaderX3: Advanced Rendering with DirectX and
OpenGL (Shaderx Series), Engel, W. (Editor), Charles River Media,
Cambridge, MA, November 2004

[DeEmMERSO05], DemMERS, J. 2005. Depth of Field: A Survey of Techniques, GPU
Gems. Programming Techniques, Tips and Tricks for Real-Time Graphics,
Fernando, R. (Editor), Addison-Wesley, April 2004.

164 |Page

