
Rippling Reflective and Refractive Water

Rippling Reflective and Refractive Water

Alex Vlachos John Isidoro Chris Oat
 ATI Research ATI Research ATI Research

One of the classic challenges of real-time computer graphics is to generate
realistic looking water. Because water can look very different depending on the context
of the scene, it is important to define a few different categories of water effects. For
example, techniques used to render ocean water may not produce realistic looking puddle
water. With this in mind, the shaders presented in this chapter will focus on highly
realistic per-pixel lighting effects used to render real-time lake water. Unlike ocean
water, lake water does not have large rolling swells. Instead, the surface geometry
consists of high frequency, non-uniform perturbations that give the surface a subtle
choppiness resulting in slightly distorted reflections and refractions. Because of these
surface characteristics, shallow water reflections and refractions as shown in Figure 1 can
be reasonably approximated with planar reflections and renderable textures.

Renderable textures allow the programmer to distort the reflection and refraction
textures using a sum of scrolling bump maps to simulate the water surface ripples. One
of the nice things about distorting these textures with a bump map is that the renderable
textures can be of a much lower resolution than the screen resolution and the end result
will still look very compelling. The example below was rendered using two 512×256
renderable textures. Since the reflected and refracted geometry is drawn once for each
renderable texture, rendering to these maps at a lower resolution provides a significant
performance boost.

Figure 1 – This scene was drawn using the reflection and refraction techniques described in this chapter.

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

1

Rippling Reflective and Refractive Water

Generating Reflection & Refraction Maps

When dealing with fairly flat water surfaces such as lake water, river water, or
puddle water reflections can be convincingly approximated with planar reflections. A
reflection map is created by reflecting the scene geometry over the plane of the water’s
surface and rendering to a texture. It is important to utilize user clip planes in order to
clip any geometry that is already below the plane of reflection as this geometry is
underwater and should not be included in the reflection map, see Figure 2.

Figure 2 – Example of a reflection map created by reflecting scene geometry

about the plane of the water’s surface.

As illustrated in Figure 3 the refraction map is generated by clipping all scene
geometry above the plane of the water’s surface. As with the reflection map, user clips
planes are used to cull the geometry above the water’s surface.

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

2

Rippling Reflective and Refractive Water

Figure 3 – Example of a refraction map created by drawing only the geometry

below the water’s surface.

Vertex Shader

A vertex shader is used to approximate sine and cosine waves to generate rippling
water geometry as well as perturbing the tangent space vectors per vertex. This vertex
shader is very similar to the vertex shader presented in. The vertex shader is presented
below along with a description of the changes necessary to produce less drastic ripples.

 vs.1.1
 // v0 - Vertex Position
 // v7 - Vertex Texture Data u,v
 // v8 - Vertex Tangent (v direction)
 //
 // c0 - { 0.0, 0.5, 1.0, 2.0}
 // c1 - { 4.0, .5pi, pi, 2pi}
 // c2 - {1, -1/3!, 1/5!, -1/7! } //for sin
 // c3 - {1/2!, -1/4!, 1/6!, -1/8! } //for cos
 // c4-7 - Composite World-View-Projection Matrix
 // c8 - ModelSpace Camera Position
 // c9 - ModelSpace Light Position
 // c10 - {fixup factor for taylor series imprecision, }
 // c11 - {waveHeight0, waveHeight1, waveHeight2, waveHeight3}
 // c12 - {waveOffset0, waveOffset1, waveOffset2, waveOffset3}
 // c13 - {waveSpeed0, waveSpeed1, waveSpeed2, waveSpeed3}
 // c14 - {waveDirX0, waveDirX1, waveDirX2, waveDirX3}
 // c15 - {waveDirY0, waveDirY1, waveDirY2, waveDirY3}
 // c16 - {time, sin(time)}
 // c17 - {basetexcoord distortion x0, y0, x1, y1}

 mul r0, c14, v7.x // use tex coords as inputs to sinusoidal warp
 mad r0, c15, v7.y, r0 // use tex coords as inputs to sinusoidal warp

 mov r1, c16.x // time...
 mad r0, r1, c13, r0 // add scaled time to move bumps by frequency
 add r0, r0, c12
 frc r0.xy, r0 // take frac of all 4 components
 frc r1.xy, r0.zwzw //
 mov r0.zw, r1.xyxy //

 mul r0, r0, c10.x // multiply by fixup factor (fix taylor series inaccuracy)

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

3

Rippling Reflective and Refractive Water

 sub r0, r0, c0.y // subtract .5
 mul r0, r0, c1.w // mult tex coords by 2pi coords range from(-pi to pi)

 mul r5, r0, r0 // (wave vec)^2
 mul r1, r5, r0 // (wave vec)^3
 mul r6, r1, r0 // (wave vec)^4
 mul r2, r6, r0 // (wave vec)^5
 mul r7, r2, r0 // (wave vec)^6
 mul r3, r7, r0 // (wave vec)^7
 mul r8, r3, r0 // (wave vec)^8

 mad r4, r1, c2.y, r0 // (wave vec) - ((wave vec)^3)/3!
 mad r4, r2, c2.z, r4 // + ((wave vec)^5)/5!
 mad r4, r3, c2.w, r4 // - ((wave vec)^7)/7!

 mov r0, c0.z // 1
 mad r5, r5, c3.x ,r0 // -(wave vec)^2/2!
 mad r5, r6, c3.y, r5 // +(wave vec)^4/4!
 mad r5, r7, c3.z, r5 // -(wave vec)^6/6!
 mad r5, r8, c3.w, r5 // +(wave vec)^8/8!

 dp4 r0, r4, c11 // multiply wave heights by waves

 mul r0.xyz, c0.xxzx, r0 // multiply wave magnitude at this vertex by normal
 add r0.xyz, r0, v0 // add to position
 mov r0.w, c0.z // homogenous component

 m4x4 oPos, r0, c4 // OutPos = ObjSpacePos * World-View-Projection Matrix
 mul r1, r5, c11 // cos* waveheight
 dp4 r9.x, -r1, c14 // normal x offset
 dp4 r9.yzw, -r1, c15 // normal y offset and tangent offset
 mov r5, c0.xxzx
 mad r5.xy, r9, c10.y, r5 // warped normal move according to cos*wavedir*waveeheight
 mov r4, v9
 mad r4.z, -r9.x, c10.y, r4.z // warped tangent vector
 dp3 r10.x, r5, r5
 rsq r10.y, r10.x
 mul r5, r5, r10.y // normalize normal

 dp3 r10.x, r4, r4
 rsq r10.y, r10.x
 mul r4, r4, r10.y // normalize tangent
 mul r3, r4.yzxw, r5.zxyw
 mad r3, r4.zxyw, -r5.yzxw, r3 // cross product to find binormal
 sub r1, c9, r0 // light vector
 sub r2, c8, r0 // view vector
 dp3 r10.x, r1, r1 // normalize light vector
 rsq r10.y, r10.x
 mul r1, r1, r10.y
 dp3 r6.x, r1, r3
 dp3 r6.y, r1, r4
 dp3 r6.z, r1, r5 // transform light vector into tangent space
 dp3 r10.x, r2, r2
 rsq r10.y, r10.x
 mul r2, r2, r10.y // normalized view vector

 dp3 r7.x, r2, r3
 dp3 r7.y, r2, r4
 dp3 r7.z, r2, r5 // put view vector in tangent space

 mov r0, c16.x
 mul r0, r0, c24
 frc r0.xy, r0
 mul r1, v7, c26

 add oT0, r1, r0 // bump map coord1
 mov r0, c16.x
 mul r0, r0, c25
 frc r0.xy, r0
 mul r1, v7, c27

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

4

Rippling Reflective and Refractive Water

 add oT1, r1, r0 // bump map coord 2
 dp4 r0.x, v0, c20
 dp4 r0.y, v0, c21
 dp4 r0.zw, v0, c22

 mov oT2, r0 // projective tex coords for reflection/ refreaction maps
 mov oT3, r7 // tan space view vec
 mov oT4, v7 // base map coords
 mov oT5, r6 // tan space light vec

Pixel Shader

The pixel shader used to render the water has a few novel features. When
sampling from the renderable textures, the texture coordinates must be interpolated
linearly in screen space. The reason for this is that the scene is already rendered from the
point of view of the camera and thus contents of the renderable texture are already
perspective correct. To achieve this, the projection matrix must be altered in the
following way:

Matrix M = { 0.5f, 0.0f, 0.0f, 0.0f,
 0.0f, -0.5f, 0.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 0.0f,
 0.5f, 0.5f, 1.0f, 0.0f };

// row major element (1,4) is set to zero
projectionMatrix[11] = 0.0f;

// projection matrix uses scale and bias to get coordinates into
// [0.0, 1.0] range
projectionMatrix = M * projectionMatrix;

Now the projection matrix will move vertices into a normalized texture space for
indexing into the pre-projected reflection and refraction maps. Given the linearly
interpolated texture coordinates, the perturbations for the reflection and refraction maps
can be performed on a per pixel basis by simply adding a scaled and rotated version of
the xy offsets from the scrolling bump maps. It is important to scale and rotate these
offsets so that as the bump map scrolls, the perturbations move in the direction that the
water is flowing. Another interesting trick is to sample the refraction map using the
swapped texture coordinates used to index the reflection map (for example, index the
reflection map using coordinates <u,v> and then sample the refraction map using
coordinates <v,u>). Swapping the coordinates in this way prevents the two scrolling
bump maps from aligning. After sampling, the refractions are modulated with the water
color and the perturbed reflections are attenuated with a per pixel fresnel term and
modulated with a reflection color. The per pixel fresnel term scales the reflections such
that the strength of the reflection is dependant on the angle of the view vector with
respect to the water surface normal. The full shader is shown below along with further
comments.

 ps.1.4

 // T0 : Bump map 1 Coordinates
 // T1 : Bump map 2 Coordinates
 // T2 : Projective Texture Coordinates for Reflection/Refraction Maps

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

5

 // T3 : Tangent Space View Vector

Rippling Reflective and Refractive Water

Excerpted from ShaderX: Vertex and Pixel Shader Tips and Tricks

6

 // T5 : Tangent Space Light Vector
 texld r0, t0
 texld r1, t1

 texcrd r2.xy, t2_dw.xyw // renderable textures
 texcrd r4.xyz, t3 // tan space V
 texcrd r5.xyz, t5 // tan space L

 add_d2 r1.rgb, r0_bx2, r1_bx2

 mov r3.xy, r2

 dp3 r0.r, r4, r1 // V.N
 dp3 r0.g, r1, r5 // L.N

 mad_sat r5.rg, r1, c2, r3 // perturb refraction
 mad_sat r4.rg, r1, c1, r3 // perturb reflection

 phase

 texcrd r0.rgb, r0 // V.N, L.N, R.L

 texld r2, r4 // Reflection
 texld r3, r5 // Refraction

 mul_sat r2.rgb, r2, c3 // reflection color
 +mul r2.a, r0.g, r0.g

 mul_sat r3.rgb, r3, c4 // refraction color
 +mul_sat r2.a, r2.a, r2.a

 mad_sat r0.rgb, 1-r0.r, r2, r3
 +mul_sat r2.a, r2.a, r2.a

 mad_sat r0.rgb, r2.a, c6, r0 // add specular highlights to reflection
 +mov r0.a, r0.r

Conclusion

This paper focused on using vertex and pixel shaders to render realistic rippling
water with realistic reflections and refractions by building on techniques described in
other sections. The shaders presented here demonstrate the use of Taylor Series
approximations to compute sine and cosine waves in a vertex shader as well as the use of
renderable textures to create rippling reflections and refractions.

The shaders described in this section as well as the accompanying screenshots were taken
from ATI’s Nature Demo. This real time interactive graphics demo shows rippling
reflective and refractive water in a complex natural environment.

http://www.ati.com/developer/demos/r8000.html

	Rippling Reflective and Refractive Water
	Generating Reflection & Refraction Maps
	Vertex Shader
	Pixel Shader
	Conclusion

